100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

CSUN MATH 150A: Comprehensive Study Guide on The Cumulative Effect of a Function

Puntuación
-
Vendido
-
Páginas
7
Subido en
26-11-2025
Escrito en
2025/2026

Key Takeaway (The FTC): The two great ideas of Calculus, differentiation (rates) and integration (accumulation), are inverse operations. You differentiate to find the rate of change; you integrate the rate of change to find the total accumulation.

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
26 de noviembre de 2025
Número de páginas
7
Escrito en
2025/2026
Tipo
Notas de lectura
Profesor(es)
Stiven
Contiene
Todas las clases

Temas

Vista previa del contenido

CSUN MATH 150A: Comprehensive Study Guide on The
Cumulative Effect of a Function

(Accumulation and the Definite Integral)



A CSUN Students Insight on Mastering Accumulation
As a Math 150A student transitioning into integrals, this topic—"The Cumulative
Effect of a Function"—is arguably the single most important conceptual leap in
calculus. Its the moment we move from instantaneous rates of change
(derivatives) to total change (integrals). Think of it this way: The derivative f ′ ( x)
tells you how fast your cars position is changing right now (velocity). The integral
b

∫ f ′ ( x) dx tells you the total distance the car traveled between time a and time b.
a


The whole idea boils down to: Area under a rate function equals total
accumulated quantity. We approximate this area using the sum of small rectangles
(Riemann Sums), and then we take the limit as the rectangles become infinitely thin
—thats the magic of the definite integral. Master the Fundamental Theorem of
Calculus (FTC), and you master accumulation.


I. Foundational Concepts: What is Accumulation?

A. The Problem of Area
Before calculus, to find the area of a shape, we needed a formula (e.g.,
A=length × width ). The concept of accumulation begins with the problem of finding
the area under a non-linear curve, f ( x), between two points, x=a and x=b .
When f (x) represents a rate of change (e.g., velocity in miles per hour), the area
under the curve represents the total change or accumulation of the original
quantity (e.g., total distance in miles).

B. Riemann Sums: The Accumulation Approximation
Since we cant find the area exactly with simple geometry, we approximate it using
rectangles. This process is called a Riemann Sum.
1. Partitioning the Interval: Divide the interval [a , b] into n subintervals of
equal width, Δ x .

, b−a
Δ x=
n
2. Choosing Sample Points: Within each subinterval, [ xi − 1 , x i] , we choose a
sample point x ∗i . The height of the i -th rectangle is determined by the
function value at this point, f ( x ∗i ).

3. Calculating the Area of Rectangles: The area of the i -th rectangle is

Ai=f (x i ) ⋅ Δ x .

4. Summing the Areas: The total approximate area, Rn, is the sum of the areas
of all n rectangles:
n
Rn =∑ f ( x∗i ) ⋅ Δ x
i=1


The common choices for x ∗i are:

 Left Endpoint Sum ( Ln): x ∗i =xi − 1

Right Endpoint Sum ( Rn ): x i =xi



x i −1 + x i
 Midpoint Sum ( M n): x ∗i =
2
C. The Definite Integral: The Limit of Accumulation
To move from the approximation (Riemann Sum) to the exact cumulative effect, we
must let the number of rectangles (n ) approach infinity, which simultaneously
forces the width of the rectangles ( Δ x ) to approach zero.
The Definite Integral is formally defined as the limit of the Riemann Sum:
b n

∫ f (x )dx= n→
lim ∑ f (x ∗i )⋅ Δ x

a i =1


 Notation Breakdown:

o ∫ (The Integral Sign): An elongated "S" representing "Sum" (the limit
of the summation).

o a and b (Limits of Integration): Define the interval over which
accumulation occurs.

o f ( x) (Integrand): The function whose rate we are accumulating.

o dx (Differential): Represents the infinitely small width ( Δ x ) of the
rectangles.
$5.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
enricowintheiser

Conoce al vendedor

Seller avatar
enricowintheiser All Types of Notes
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
5 meses
Número de seguidores
0
Documentos
16
Última venta
5 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes