100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

BUAL 2650 FINAL EXAM – LEE QUESTIONS

Puntuación
-
Vendido
-
Páginas
5
Grado
A+
Subido en
17-11-2025
Escrito en
2025/2026

BUAL 2650 FINAL EXAM – LEE QUESTIONS

Institución
BUAL 2650
Grado
BUAL 2650









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
BUAL 2650
Grado
BUAL 2650

Información del documento

Subido en
17 de noviembre de 2025
Número de páginas
5
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

BUAL 2650 FINAL EXAM – LEE QUESTIONS


Simple Regression - Answer --only 1 predictor variable
-y-hat=b0 + b1*x

Multiple Regression - Answer --more than 1 predictor variables
-y-hat=b0 + b1*x1 + b2*x2......

Residual - Answer -the difference between the actual data and the value we predict for
it

=observed-predicted
=y-y-hat

Interpreting Residuals - Answer --Negative residual: the regression equation provided
an overestimate of the data.
-Positive residual: the regression equation provided an underestimation of the data.

Linear regression only works for... - Answer -Linear models

What do we want to see from a residual plot? - Answer --No pattern
-No plot thickening
-Randomization

Extrapolation - Answer --venturing into new x territory
-used to estimate values that go beyond a set of given data or observations
-very dangerous

Dangers of Extrapolation - Answer --assumes there is a linear relationship beyond the
range of the data
-assumes that nothing about the relationship between x and y changes at extreme
values of x

Interpreting the Intercept of a MRM - Answer -is it meaningful or not? we decide if it is
meaningful by assuming the other coefficients are 0

Is this multiple regression model any good at all? - Answer -Test hypotheses: HO: all
beta values = 0 vs. HA: at least 1 beta value does not = 0
-then, use a t-test

Rules for interpreting multiple regression coefficients - Answer --express in terms of the
units of the dependent variable
-always say "all else being equal"

, -always mention the other variables by saying "after (variable #1) and (variable #2) are
accounted for," and interpret the coefficient

How do we determine if a multiple regression model is significant? - Answer -p-value
(needs to b small) and t-test (needs to be big - this means that at least one of the
predictors accounts for the variation in predicting the dependent variable.)

R-squared - Answer --"Goodness of fit"
-a statistical measure of how close the data are to the fitted regression line (how well
observed outcomes are replicated by the model)

Dangers of R-squared - Answer -

Interpreting R-Square - Answer -R-square = .80 indicates that the model explains 80%
of variability of the response (y) data OR R-square = 0.41 indicates that 41% of the
variability of height can be explained by the mode.

Outliers - Answer -points with y-values far from the regression model; points far from
the body of the data

Leverage - Answer -A data point can also be unusual if its x-value is far from the mean
of the x-values. Such points are said to have high leverage.

Influential Point - Answer -We say that a point is influential if omitting it from the
analysis gives a very different slope for the model

Causality Warning - Answer -no matter how strong the association, no matter how large
the r-squared value, there is no way to conclude that for a regression alone that one
variable caused the other

Autocorrelation - Answer -When values at time, t, are correlated with values at time, t-1,
we say the values are autocorrelated in the first order. If values are correlated with
values two time periods back, we say second-order autocorrelation is present, and so
on.

Autoregression and P-values - Answer -large p-values (ex. .870 and .699) means that
the values are not significant

Why is autocorrelation a problem? - Answer -When data are highly correlated over
time, each data point is similar to those around it, so each data point provides less
additional information than if the points had been independent. All regression inference
is based on independent errors.

Durbin-Watson statistic - Answer --can detect first-order autocorrelation from the
residuals of a regression analysis
$12.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
QUEENS Harvard University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
222
Miembro desde
3 año
Número de seguidores
180
Documentos
4152
Última venta
2 semanas hace

4.1

61 reseñas

5
35
4
10
3
8
2
3
1
5

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes