100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Math 225 Final Exam – Latest Update 2025/2026 | Complete Questions & Answers

Puntuación
-
Vendido
-
Páginas
9
Grado
A+
Subido en
17-11-2025
Escrito en
2025/2026

Prepare effectively for the Math 225 Final Exam with this latest 2025/2026 updated resource. Includes all exam questions with verified answers, covering key topics such as calculus, algebra, functions, and problem-solving techniques. Ideal for exam preparation, self-study, and classroom review, this guide helps students master content, reinforce understanding, and excel on the exam.

Mostrar más Leer menos
Institución
Math 225
Grado
Math 225









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Math 225
Grado
Math 225

Información del documento

Subido en
17 de noviembre de 2025
Número de páginas
9
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Math 225 Final Exam Latest update
2025/2026

If the columns of A are linearly dependent - correct answerThen the matrix is not
invertible and an eigenvalue is 0

Note that A−1 exists. In order for λ−1 to be an eigenvalue of A−1, there must exist a
nonzero x such that Upper A Superscript negative 1 Baseline Bold x equals lambda
Superscript negative 1 Baseline Bold x . A−1x=λ−1x. Suppose a nonzero x satisfies
Ax=λx. What is the first operation that should be performed on Ax=λx so that an
equation similar to the one in the previous step can be obtained? - correct answerLeft-
multiply both sides of Ax=λx by A−1.

Show that if A2 is the zero matrix, then the only eigenvalue of A is 0. - correct answerIf
Ax=λx for some x≠0, then 0x=A2x=A(Ax)=A(λx)=λAx=λ2x=0. Since x is nonzero, λ must
be zero. Thus, each eigenvalue of A is zero.

Finding the characteristic polynomial of a 3 x 3 matrix - correct answerAdd the first two
columns to the right side of the matrix and then add the down diagonals and subtract
the up diagonals

In a simplified n x n matrix the Eigenvalues are - correct answerThe values of the main
diagonal

Use a property of determinants to show that A and AT have the same characteristic
polynomial - correct answerStart with detAT−λI)=detAT−λI)=det(A−λI)T. Then use the
formula det AT=det A.

The determinant of A is the product of the diagonal entries in A. Select the correct
choice below and, if necessary, fill in the answer box to complete your choice. - correct
answerThe statement is false because the determinant of the
2×2 matrix A= [ 1 1 (1 1 below) ] is not equal to the product of the entries on the main
diagonal of A.

An elementary row operation on A does not change the determinant. Choose the
correct answer below. - correct answerThe statement is false because scaling a row
also scales the determinant by the same scalar factor.

(det A)(det B)=detAB. Select the correct choice below and, if necessary, fill in the
answer box to complete your choice. - correct answerThe statement is true because it is
the Multiplicative Property of determinants.

, If λ+5 is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.
Select the correct choice below and, if necessary, fill in the answer box to complete your
choice. - correct answerThe statement is false because in order for 5 to be an
eigenvalue of A, the characteristic polynomial would need to have a factor of λ−5.

Determine whether the statement "If A is 3×3, with columns a1, a2, a3, then det A
equals the volume of the parallelepiped determined by a1, a2, a3" is true or false.
Choose the correct answer below. - correct answerThe statement is false because det
A equals the volume of the parallelepiped determined by a1, a2, a3. It is possible that
det A≠det A.

Determine whether the statement "det AT=(−1)det A"is true or false. Choose the correct
answer below. - correct answerThe statement is false because det AT=det A for any
n×n matrix A.

Determine whether the statement "The multiplicity of a root r of the characteristic
equation of A is called the algebraic multiplicity of r as an eigenvalue of A" is true or
false. Choose the correct answer below. - correct answerThe statement is true because
it is the definition of the algebraic multiplicity of an eigenvalue of A.

Determine whether the statement "A row replacement operation on A does not change
the eigenvalues" is true or false. Choose the correct answer below. - correct answerThe
statement is false because row operations on a matrix usually change its eigenvalues.

A matrix A is diagonalizable if A has n eigenvectors. - correct answerThe statement is
false. A diagonalizable matrix must have n linearly independent eigenvectors.

If A is diagonalizable, then A has n distinct eigenvalues - correct answerThe statement
is false. A diagonalizable matrix can have fewer than n eigenvalues and still have n
linearly independent eigenvectors.

If AP=PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A. -
correct answerThe statement is true. Let v be a nonzero column in P and let λ be the
corresponding diagonal element in D. Then AP=PD implies that Av=λv, which means
that v is an eigenvector of A.

If A is invertible, then A is diagonalizable. - correct answerThe statement is false. An
invertible matrix may have fewer than n linearly independent eigenvectors, making it not
diagonalizable.

A is a 3×3 matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A
diagonalizable? Why? - correct answerNo. The sum of the dimensions of the
eigenspaces equals 2 and the matrix has 3 columns. The sum of the dimensions of the
eigenspace and the number of columns must be equal.
$15.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Successscore Phoenix University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
29
Miembro desde
4 meses
Número de seguidores
1
Documentos
1584
Última venta
22 horas hace
Ultimate Study Resource | Nursing, HESI, ATI, TEAS, Business & More

Welcome to your one-stop exam prep store!

2.8

4 reseñas

5
0
4
2
3
0
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes