M
ED
ST
U
D
Y
,MEDSTUDY.COM
SOLUTIONS MANUAL
to accompany
M
ORBITAL MECHANICS FOR ENGINEERING STUDENTS
ED
Howard D. Curtis
Embry-Riddle Aeronautical University
ST
Daytona Beach, Florida
U
D
Y
,Solutions Manual Orbital Mechanics for Engineering Students Chapter 1
Problem 1.1
(a)
A A Axiˆ Ayˆj Azkˆ Axiˆ Ayˆj Azkˆ
Axiˆ Axiˆ Ayˆj Azkˆ Ayˆj Axiˆ Ayˆj Azkˆ Azkˆ Axiˆ Ayˆj Azkˆ
A 2 iˆ iˆ A A iˆ ˆj A A iˆ kˆ A A ˆj iˆ A 2 ˆj ˆj A A ˆj kˆ
x x y x z y x y y z
AzAx kˆ iˆ AzAy kˆ ˆj A 2 kˆ kˆ
z
A 2 1 A A 0 A A 0 A A 0 A 2 1 A A 0 A A 0 A A 0 A 2 1
x x y x z y x y z z x z y z
y
Ax2 Ay2 Az2
But, according to the Pythagorean Theorem, A 2x A 2y A 2z A2 , where A A , the magnitude of
the vector A . Thus A A A2 .
M
(b)
iˆ ˆj kˆ
A B C A Bx By Bz
ED
Cx Cy Cz
Axiˆ A yˆj A zkˆ iˆ ByCz B zC y ˆjBxCz BzCx kˆ BxCy ByCx
Ax ByCz BzCy Ay BxCz BzCx Az BxCy ByCx
or
A B C AxByCz AyBzCx AzBxCy AxBzCy AyBxCz AzByCx
ST
(1)
Note that A B C C A B , and according to (1)
C A B CxAyBz Cy AzBx Cz AxBy CxAzBy Cy AxBz Cz AyBx (2)
U
The right hand sides of (1) and (2) are identical. Hence A B C A B C .
(c)
D
iˆ ˆj kˆ iˆ ˆj kˆ
A B C Axiˆ Ayˆj Azkˆ Bx By Bz Ax Ay Az
Cx Cy Cz ByCz BzCy BzCx BxCy BxCy ByCx
Y
Ay BxCy ByCx Az BzCx BxCz iˆ Az ByCz BzCy Ax BxCy ByCx ˆj
x z y y z z y
A B C B C A B C B C kˆ
x z x
AyBxCy AzBxCz AyByCx AzBzCx iˆ AxByCx AzByCz AxBxCy AzBzCy ˆj
x z x y z y x x z y y z
A B C A B C A B C A B C kˆ
Bx AyCy AzCz Cx AyBy AzBz iˆ By AxCx AzCz Cy AxBx AzBz ˆj
z x x y y z x x y y
B A C A C C A B A B kˆ
Add and subtract the underlined terms to get
1
, Solutions Manual Orbital Mechanics for Engineering Students Chapter 1
A B C Bx AyCy AzCz AxCx Cx AyBy AzBz AxBx iˆ
By AxCx AzCz AyCy Cy AxBx AzBz AyBy ˆj
y y z z z x x
B A C A C A C C A B A B A B kˆ
z x x y y
z z
Bx iˆ By ˆj Bzkˆ A C A C A C C iˆ C ˆj C kˆ A B A B
x x y y z z x y z x x y y AzBz
or
A B C BA C CA B
Problem 1.2 Using the interchange of Dot and Cross we get
A B C D A B CD
But
A B C D C A B D
M
(1)
Using the bac – cab rule on the right, yields
A B CD AC B BC AD
ED
or
A B C D A DC B B DC A (2)
Substituting (2) into (1) we get
ST
A B C D A CB D A DB C
Problem 1.3
Velocity analysis
U
From Equation 1.38,
v vo rrel vrel . (1)
D
From the given information we have
Y
vo 10Iˆ 30Jˆ 50 Kˆ (2)
rrel r ro 150Iˆ 200Jˆ 3 0 0 K̂ 300Iˆ 200Jˆ 1 0 0 K̂ 150Iˆ 400Jˆ 2 0 0 K̂ (3)
Iˆ Jˆ K̂
rrel 0.6 0.4 1.0 320Iˆ 270Jˆ 300K̂ (4)
150 400 200
2