100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Puntuación
-
Vendido
-
Páginas
664
Grado
A+
Subido en
11-11-2025
Escrito en
2025/2026

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Institución
A First Course In Differential Equations
Grado
A First Course in Differential Equations











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
A First Course in Differential Equations
Grado
A First Course in Differential Equations

Información del documento

Subido en
11 de noviembre de 2025
Número de páginas
664
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual
are included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Exercises 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 1 in Review Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)
p
5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y 2 = 1, we see that it is nonlinear
in y because of y 2 . However, writing it in the form (y 2 − 1)(dx/dy) + x = 0, we see that it is
linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is
linear in v . However, writing it in the form (v + uv − ueu )(du/dv) + u = 0, we see that it is
nonlinear in u.
13. From y = e−x/2 we obtain y ′ = − 12 e−x/2 . Then 2y ′ + y = −e−x/2 + e−x/2 = 0.




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6 −20t
14. From y = − e we obtain dy/dt = 24e−20t , so that
5 5
 
dy −20t 6 6 −20t
+ 20y = 24e + 20 − e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain y ′ = 3e3x cos 2x−2e3x sin 2x and y ′′ = 5e3x cos 2x−12e3x sin 2x,
so that y ′′ − 6y ′ + 13y = 0.
16. From y = − cos x ln(sec x + tan x) we obtain y ′ = −1 + sin x ln(sec x + tan x) and
y ′′ = tan x + cos x ln(sec x + tan x). Then y ′′ + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [−2, ∞). From y ′ = 1+2(x+2)−1/2
we have

(y − x)y ′ = (y − x)[1 + (2(x + 2)−1/2 ]

= y − x + 2(y − x)(x + 2)−1/2

= y − x + 2[x + 4(x + 2)1/2 − x](x + 2)−1/2

= y − x + 8(x + 2)1/2 (x + 2)−1/2 = y − x + 8.

An interval of definition for the solution of the differential equation is (−2, ∞) because y ′ is
not defined at x = −2.
18. Since tan x is not defined for x = π/2 + nπ , n an integer, the domain of y = 5 tan 5x is
{x 5x 6= π/2 + nπ}
or {x x 6= π/10 + nπ/5}. From y ′ = 25 sec2 5x we have

y ′ = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (−π/10, π/10). An-
other interval is (π/10, 3π/10), and so on.
19. The domain of the function is {x 4 − x2 6= 0} or {x x 6= −2 or x 6= 2}. From y ′ =
2x/(4 − x2 )2 we have
 2
1

y = 2x = 2xy 2 .
4 − x2
An interval of definition for the solution of the differential equation is (−2, 2). Other inter-
vals are (−∞, −2) and (2, ∞).

20. The function is y = 1/ 1 − sin x , whose domain is obtained from 1 − sin x 6= 0 or sin x 6= 1.
Thus, the domain is {x x =6 π/2 + 2nπ}. From y ′ = − 12 (1 − sin x)−3/2 (− cos x) we have

2y ′ = (1 − sin x)−3/2 cos x = [(1 − sin x)−1/2 ]3 cos x = y 3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.


2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X − 1) − ln(X − 1) = t and differentiating x

implicitly we obtain 4

2 dX 1 dX
− =1 2
2X − 1 dt X − 1 dt
 
2 1 dX t
− =1 –4 –2 2 4
2X − 1 X − 1 dt
–2
2X − 2 − 2X + 1 dX
=1
(2X − 1) (X − 1) dt
–4
dX
= −(2X − 1)(X − 1) = (X − 1)(1 − 2X).
dt

Exponentiating both sides of the implicit solution we obtain

2X − 1
= et
X −1
2X − 1 = Xet − et

(et − 1) = (et − 2)X

et − 1
X= .
et − 2

Solving et − 2 = 0 we get t = ln 2. Thus, the solution is defined on (−∞, ln 2) or on (ln 2, ∞).
The graph of the solution defined on (−∞, ln 2) is dashed, and the graph of the solution
defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

dy dy 4
−2x2 − 4xy + 2y =0
dx dx
2
−x2 dy − 2xy dx + y dy = 0
x
2xy dx + (x2 − y)dy = 0. –4 –2 2 4

–2
Using the quadratic formula to solve y 2 − 2x2 y − 1 = 0
√  √
for y , we get y = 2x2 ± 4x4 + 4 /2 = x2 ± x4 + 1 . –4

Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 − x4 + 1 . Both solutions are defined on (−∞, ∞).
The graph of y1 (x) is solid and the graph of y2 is dashed.




3
$12.50
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Fortunexams Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
41
Miembro desde
3 meses
Número de seguidores
1
Documentos
536
Última venta
1 semana hace
Fortunexams Test Banks & Practice Exams Graded A+

Looking for relevant and up-to-date study materials to help you ace your exams? Puregold has got you covered! We offer a wide range of study resources, including test banks, exams, study notes, and more, to help prepare for your exams and achieve your academic goals. What's more, we can also help with your academic assignments, research, dissertations, online exams, online tutoring and much more! Please send us a message and will respond in the shortest time possible. Always Remember: Don't stress. Do your best. Forget the rest! Gracias!

Lee mas Leer menos
3.0

4 reseñas

5
1
4
0
3
2
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes