100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

CFA Level 2 Exam Study Guide 2025/2026 | Verified Questions, Notes & Practice Solutions

Puntuación
-
Vendido
-
Páginas
42
Grado
A+
Subido en
10-11-2025
Escrito en
2025/2026

Ace your CFA Level 2 exams with this expertly curated 2025/2026 Study Guide — a complete resource packed with verified exam questions, worked solutions, and concise topic summaries. Covering all key areas including Financial Reporting, Quantitative Methods, Equity Valuation, and Portfolio Management, this guide provides the clarity and confidence you need to master advanced CFA concepts. Ideal for revision, mock exams, and real-world financial analysis preparation, this CFA Level 2 Study Pack helps candidates excel and move closer to earning their CFA Charter.

Mostrar más Leer menos
Institución
CFA - Chartered Financial Analyst
Grado
CFA - Chartered Financial Analyst











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
CFA - Chartered Financial Analyst
Grado
CFA - Chartered Financial Analyst

Información del documento

Subido en
10 de noviembre de 2025
Número de páginas
42
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

CFA Level 2 CFA Level 2 Study Guide
Study online at https://quizlet.com/_hmt5b3

1. Independent X - explanatory variables
variable

2. Dependent Vari- Y - explained variable
able

3. 3 Primary As- 1) Multicolinearity (linear relationship between x & y variables should exist) 2)
sumption viola- heteroskedasicity (variance of the error term should be constant. e=0) 3) Serial
tions of multi re- Correlation (residuals are correlated and normally distributed when should not
gression be)

4. ANOVA table



5. R^2 using anova (SST - SSE ) / SST OR RSS / SST
table

6. Adjusted R^2 1 - ((n-1)/(n-k-1)) * (1-R^2)

7. AIC (Evaluation of regression model criteria) --> Better for forecAsting. LOWER IS
BETTER.

8. BIC (evaluation of regression model criteria) --> Better for goodness of fit. LOWER IS
BETTER.

9. F-Statsitic for re- ((SSEr - SSEu)/q) / (SSEu / (n- k -1))
stricted model.
(H0 excludes 1 or
more slope vari-
ables)

10. F statistic for un- ((SSTu - SSEu)/k) / (SSEu / (n- k -1))
restricted model
2025/2026


, CFA Level 2 CFA Level 2 Study Guide
Study online at https://quizlet.com/_hmt5b3

(H0 includes all
slope variables)

11. Regression mod- selection & transformation
el specifications

12. 4 Functional 1) Omission of important independent variables --> serial correlation or het-
Form Model Mis- eroskedasticity
specifications 2) Inappropriate variable form--> heteroskedasticity
3) Inappropriate variable scaling --> heteroskedasticity
4) Data improperly pooled --> serial correlation or heteroskedasticity

13. Unconditional Occurrs when the heteroskedasticity is not related to the level of the independent
heteroskedastici- variable; doesn't systematically go up or down with changes in the value of the
ty independent variable(s); not usually a major problem

14. Conditional het- When heteroskedasticity is related to the level of independent variables (ex.
eroskedasticity increases when variables increase)

15. Effects of con- Type I errors due to standard errors are unreliable estimates, f-test is unreliable,
ditional het-
eroskedasticity

16. Breusch-Pagan if n * r^2 > chi-square critical value, null is rejected, and we have a problem with
(BP) test conditional heteroskedasticity

17. Breush-Godfrey general test for serial correlation. F test with p and n-p-k-1 degrees of freedom
Test

18. VIF (variance in- test for multicollinearity
flation factor
test)

19. VIF thresholds
2025/2026


, CFA Level 2 CFA Level 2 Study Guide
Study online at https://quizlet.com/_hmt5b3

VIF = 1 -> no evidence of multicollinearity
VIF > 5 - warning, requires more investigation
VIF > 10 -- evidence of multicollinearirty

20. When p > signifi- Fail to reject null hypothesis that coefficient = 0
cant level

21. test statistic > reject the null and conclude a problem with heteroskedasticity
critical value

22. test statistic for n * r^2
BP

23. Test statistic ver- Test statistic -- think something you calculate. It is the # of standard errors you are
sus critical value away from your hypothesis.
Critical value -- think benchmark. Uses sig. level and degrees of freedom to
calculate.

24. Outliers vs. outliers = extreme observations of y variable, high-leverage points = extreme
high-leverage oberservations of x variable
points

25. Dummy vari- binary independent variables that assigned values of either 0 or 1 (can be slope
ables or intercept dummies)

26. Likelihood ratio = -2(likelihood of restricted model - likelihood of unrestricted model)
test for logistic
regression test statistic > chi-squared critical value --> reject the null hypothesis

27. Types of trend linear, and log-linear
time series

28. Log-linear equa- ln(y) = b0 + B1(t) or y = e^(b0+ b1(t))
tion
2025/2026


, CFA Level 2 CFA Level 2 Study Guide
Study online at https://quizlet.com/_hmt5b3


29. When to use a lin- when data points appear to be equally distributed above and below the regres-
ear trend model sion line

30. When to use a When residuals (off regression) tend to be persistently positive or negative (ex.
log-linear trend financial data like stock prices and company sales)
model

31. Autoregressive When the dependent variable is regressed against one or more lagged values of
model (AR) itself (ex. sales today forecasted based on sales yesterday)

x(t) = b(0) + b(1)x(t-1) + E

32. covariance sta- 1. constant mean
tionarity 2. constant variance
3. constant covariance

33. Model fit for Testing whether autocorrelations are significantly different from 0 (if the model is
the autoregres- correctly specified, no autocorrelations will be statistically significant) t-test used.
sive (AR) model

34. Root Mean (SEE) used to test the accuracy of AR models in forecasting out-of-sample values.
Squared Error LOWER than better.

35. Random walk the movement over time of an unpredictable variable -- has a unit root -- and
therefore has nonstationarity.

36. Random walk the intercept term is not equal to zero. That is, in addition to a random walk error
with a drift term, the time series is expected to increase or decrease by a constant amount
each period.

37. Dickey-Fuller Test Test for stationarity in time series data. (Unit root test)

x(t) - x(t-1) = b(0) + (b(1) -1)*(x(t-1))
2025/2026
$12.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Testcenter111 Alabama State University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
44
Miembro desde
2 año
Número de seguidores
2
Documentos
1413
Última venta
4 días hace
Study with Me

Quality precedes quantity.

3.7

14 reseñas

5
7
4
1
3
3
2
1
1
2

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes