100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Introduction to Probability, 2nd Edition – John Tsitsiklis & Dimitri Bertsekas | Complete Solutions Manual (All Chapters) | Verified A+ Answers 2025/2026

Puntuación
-
Vendido
-
Páginas
164
Grado
A+
Subido en
03-11-2025
Escrito en
2025/2026

This comprehensive solutions manual for Introduction to Probability (2nd Edition) by John Tsitsiklis and Dimitri Bertsekas provides fully worked-out, step-by-step solutions for all chapters and exercises. Covering topics such as random variables, expectation, conditional probability, and limit theorems, this verified A+ resource is ideal for students aiming to deepen their understanding of probability theory. It follows the textbook’s logical approach and is perfect for both independent study and exam preparation.

Mostrar más Leer menos
Institución
Introduction To Probability
Grado
Introduction to Probability











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Introduction to Probability
Grado
Introduction to Probability

Información del documento

Subido en
3 de noviembre de 2025
Número de páginas
164
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solution Manual for
Introduction to
Probability 2nd
Edition
Problem Solutions
by John Tsitsiklis & Dimitri Bertsekas


Massachusetts Institute of Technology




Athena Scientific, Belmont, Massachusetts


1

, CHAPT ER 1




Solution to Problem 1.1. We have

A = {2, 4, 6}, B = {4, 5, 6},

so A ∪ B = {2, 4, 5, 6},
and (A ∪ B)c = {1, 3}.


On the other hand,

Ac ∩ Bc = {1, 3, 5} ∩ {1, 2, 3} = {1, 3}.

Similarly, we have A ∩ B = {4, 6}, and

(A ∩ B)c = {1, 2, 3, 5}.

On the other hand,

Ac ∪ Bc = {1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}.


Solution to Problem 1.2. (a) By using a Venn diagram it can be seen that for
any sets S and T , we have
S = (S ∩ T ) ∪ (S ∩ Tc).
(Alternatively, argue that any x must belong to either T or to T c , so x belongs
to S if and only if it belongs to S ∩ T or to S ∩ Tc.) Apply this equality with S =
Ac and T = B, to obtain the first relation

Ac = (Ac ∩ B) ∪ (Ac ∩ Bc).

Interchange the roles of A and B to obtain the second relation.
(b) By De Morgan’s law, we have

(A ∩ B)c = Ac ∪ Bc,

and by using the equalities of part (a), we obtain

(A∩B)c = (Ac∩B)∪(Ac∩Bc) ∪ (A∩Bc)∪(Ac∩Bc) = (Ac∩B)∪(Ac∩Bc)∪(A∩Bc).

(c) We have A = {1, 3, 5} and B = {1, 2, 3}, so A ∩ B = {1, 3}. Therefore,

(A ∩ B)c = {2, 4, 5, 6},



2

,and
Ac ∩ B = {2}, Ac ∩ Bc = {4, 6}, A ∩ Bc = {5}.
Thus, the equality of part (b) is verified.
Solution to Problem 1.5. Let G and C be the events that the chosen
student is a genius and a chocolate lover, respectively. We have P(G) = 0.6,
P(C) = 0.7, and P(G ∩ C) = 0.4. We are interested in P(Gc ∩ Cc), which is obtained
with the following calculation:

P(Gc ∩Cc) = 1—P(G∪C) = 1— P(G)+P(C)—P(G∩C) = 1—(0.6+0.7—0.4) = 0.1.

Solution to Problem 1.6. We first determine the probabilities of the six
possible outcomes. Let a = P({1}) = P({3}) = P({5}) and b = P({2}) =
P({4}) = P({6}).
We are given that b = 2a. By the additivity and normalization axioms, 1 = 3a +
3b = 3a + 6a = 9a. Thus, a = 1/9, b = 2/9, and P({1, 2, 3}) = 4/9.
Solution to Problem 1.7. The outcome of this experiment can be any finite
sequence of the form (a1, a2, . . . , an), where n is an arbitrary positive integer, a1,
a2, . . . , an—1 belong to {1, 3}, and an belongs to {2, 4}. In addition, there are
possible outcomes in which an even number is never obtained. Such outcomes
are infinite sequences (a1, a2, . . .), with each element in the sequence belonging to
{1, 3}. The sample space consists of all possible outcomes of the above two types.
Solution to Problem 1.8. Let pi be the probability of winning against the
opponent played in the ith turn. Then, you will win the tournament if you win
against the 2nd player (probability p2) and also you win against at least one of the
two other players [probability p1 + (1 — p1)p3 = p1 + p3 — p1p3]. Thus, the
probability of winning the tournament is
p2(p1 + p3 — p1p3).

The order (1, 2, 3) is optimal if and only if the above probability is no less than
the probabilities corresponding to the two alternative orders, i.e.,

p2(p1 + p3 — p1p3) ≥ p1(p2 + p3 —

p2p3), p2(p1 + p3 — p1p3) ≥ p3(p2 + p1

— p2p1).
It can be seen that the first inequality above is equivalent to p2 ≥ p1, while the second
inequality above is equivalent to p2 ≥ p3.
Solution to Problem 1.9. (a) Since Ω = ∪n Si, we have
n

A= (A ∩ Si),
i=1

while the sets A ∩ Si are disjoint. The result follows by using the additivity axiom.
(b) The events B ∩ Cc, Bc ∩ C, B ∩ C, and Bc ∩ Cc form a partition of Ω, so by
part (a), we have

P(A) = P(A ∩ B ∩ Cc) + P(A ∩ Bc ∩ C) + P(A ∩ B ∩ C) + P(A ∩ Bc ∩ Cc).(1)

3

, The event A ∩ B can be written as the union of two disjoint events as follows:

A ∩ B = (A ∩ B ∩ C) ∪ (A ∩ B ∩ Cc),

so that
P(A ∩ B) = P(A ∩ B ∩ C) + P(A ∩ B ∩ Cc). (2)
Similarly
P(A ∩ C) = P(A ∩ B ∩ C) + P(A ∩ Bc ∩ C). (3)

,


Combining Eqs. (1)-(3), we obtain the desired result.
Solution to Problem 1.10. Since the events A ∩ Bc and Ac ∩ B are disjoint, we
have using the additivity axiom repeatedly,

P (A∩Bc)∪(Ac ∩B) = P(A∩Bc)+P(Ac ∩B) = P(A)—P(A∩B)+P(B)—P(A∩B).

Solution to Problem 1.14. (a) Each possible outcome has probability 1/36.
There are 6 possible outcomes that are doubles, so the probability of doubles is
6/36 = 1/6.
(b) The conditioning event (sum is 4 or less) consists of the 6 outcomes
}
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1) ,

2 of which are doubles, so the conditional probability of doubles is 2/6 = 1/3.
(c) There are 11 possible outcomes with at least one 6, namely, (6, 6), (6, i), and (i,
6), for i = 1, 2, . . . , 5. Thus, the probability that at least one die is a 6 is 11/36.
(d) There are 30 possible outcomes where the dice land on different numbers.
Out of these, there are 10 outcomes in which at least one of the rolls is a 6. Thus,
the desired conditional probability is 10/30 = 1/3.
Solution to Problem 1.15. Let A be the event that the first toss is a head
and let B be the event that the second toss is a head. We must compare the
conditional probabilities P(A ∩ B | A) and P(A ∩ B | A ∪ B). We have

P (A ∩ B) ∩ A P(A ∩ B)
P(A ∩ B | A) = = ,

and
P (A ∩ B) ∩ (A ∪ B) P(A ∩ B)
P(A ∩ B | A ∪ B) = = .
P(A ∪ B) P(A ∪ B)
Since P(A ∪ B) ≥ P(A), the first conditional probability above is at least as large,
so Alice is right, regardless of whether the coin is fair or not. In the case where
the coin is fair, that is, if all four outcomes HH, HT , TH, TT are equally likely,
we have

P(A ∩ B) 1/4 1 P(A ∩ B) 1/4 1
= = , = = .
P(A) 1/2 2 P(A ∪ 3/4 3
B)

4
$13.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TestbanksNerd Ohio State University College Of Medicine
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
72
Miembro desde
1 año
Número de seguidores
0
Documentos
429
Última venta
22 horas hace
TestBanks Nerd

Welcome to TestBanks Nerd – the ultimate hub for academic resources. Here, you’ll find a wide selection of test banks, solution manuals, study notes, lecture summaries, practice exams, and past papers carefully curated to help students succeed. Whether you’re preparing for an exam, revising core concepts, or looking for step-by-step solutions, this store provides accurate, reliable, and exam-focused materials across multiple subjects and editions. At TestBanks Nerd, we make studying smarter, faster, and easier.

Lee mas Leer menos
3.8

12 reseñas

5
6
4
1
3
2
2
2
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes