100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

Puntuación
-
Vendido
-
Páginas
86
Grado
A+
Subido en
03-11-2025
Escrito en
2025/2026

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

Institución
Applied Partial Differential Equations
Grado
Applied Partial Differential Equations











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Applied Partial Differential Equations
Grado
Applied Partial Differential Equations

Información del documento

Subido en
3 de noviembre de 2025
Número de páginas
86
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Applied Partial Differential Equations with
Fourier Series and Boundary Value Problems –
ST

5th Edition
UV

SOLUTION
IA
_A

MANUAL
PP
RO
Richard Haberman
VE
Comprehensive Solutions Manual for Instructors
D?
and Students

© Richard Haberman
??
All rights reserved. Reproduction or distribution without permission is prohibited.




©STUDYSTREAM

, Chapter 1. Heat Equation
Section 1.2
1.2.9 (d) Circular cross section means that P = 2πr, A = πr2 , and thus P/A = 2/r, where r is the radius.
Also γ = 0.
1.2.9 (e) u(x, t) = u(t) implies that
ST
du 2h
cρ =− u.
dt r
The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = u0 , is · ¸
2h
UV
u(t) = u0 exp − t .
cρr

Section 1.3
1.3.2 ∂u/∂x is continuous if K0 (x0 −) = K0 (x0 +), that is, if the conductivity is continuous.

Section 1.4
IA

1.4.1 (a) Equilibrium satisfies (1.4.14), d2 u/dx2 = 0, whose general solution is (1.4.17), u = c1 + c2 x. The
boundary condition u(0) = 0 implies c1 = 0 and u(L) = T implies c2 = T /L so that u = T x/L.
1.4.1 (d) Equilibrium satisfies (1.4.14), d2 u/dx2 = 0, whose general solution (1.4.17), u = c1 + c2 x. From
_A
the boundary conditions, u(0) = T yields T = c1 and du/dx(L) = α yields α = c2 . Thus u = T + αx.
1.4.1 (f) In equilibrium, (1.2.9) becomes d2 u/dx2 = −Q/K0 = −x2 , whose general solution (by integrating
twice) is u = −x4 /12 + c1 + c2 x. The boundary condition u(0) = T yields c1 = T , while du/dx(L) = 0
yields c2 = L3 /3. Thus u = −x4 /12 + L3 x/3 + T .
1.4.1 (h) Equilibrium satisfies d2 u/dx2 = 0. One integration yields du/dx = c2 , the second integration
PP

yields the general solution u = c1 + c2 x.
x=0: c2 − (c1 − T ) = 0
x=L: c2 = α and thus c1 = T + α.
Therefore, u = (T + α) + αx = T + α(x + 1).
RO

1.4.7 (a) For equilibrium:
d2 u x2 du
2
= −1 implies u = − + c1 x + c2 and = −x + c1 .
dx 2 dx
From the boundary conditions du du
dx (0) = 1 and dx (L) = β, c1 = 1 and −L + c1 = β which is consistent
2
only if β + L = 1. If β = 1 − L, there is an equilibrium solution (u = − x2 + x + c2 ). If β 6= 1 − L,
VE

there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:
Z Z L
d L du du
cρu dx = − (0) + (L) + Q0 dx = −1 + β + L.
dt 0 dx dx
D?
0

If β + L = 1, then the total thermal energy is constant and the initial energy = the final energy:
Z L Z Lµ 2 ¶
x
f (x) dx = − + x + c2 dx, which determines c2 .
0 0 2

If β + L 6= 1, then the total thermal energy is always changing in time and an equilibrium is never
??

reached.

1

, Section 1.5
d
¡ du ¢
1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes dr r dr = 0. Integrating once yields rdu/dr = c1
and integrating a second time (after dividing by r) yields u = c1 ln r + c2 . An alternate general solution
is u = c1 ln(r/r1 ) + c3 . The boundary condition u(r1 ) = T1 yields c3 = T1 , while u(r2 ) = T2 yields
c1 = (T2 − T1 )/ ln(r2 /r1 ). Thus, u = ln(r21/r1 ) [(T2 − T1 ) ln r/r1 + T1 ln(r2 /r1 )].
ST
1.5.11 For equilibrium, the radial flow at r = a, 2πaβ, must equal the radial flow at r = b, 2πb. Thus β = b/a.
d
¡ 2 du ¢
1.5.13 From exercise 1.5.12, in equilibrium dr r dr = 0. Integrating once yields r2 du/dr = c1 and integrat-
2
ing a second time (after dividing by r ) yields u = −c1 /r + c2 . The boundary conditions ¡ u(4) ¢ = 80
and u(1) = 0 yields 80 = −c1 /4 + c2 and 0 = −c1 + c2 . Thus c1 = c2 = 320/3 or u = 320 3 1 − 1r .
UV
IA
_A
PP
RO
VE
D?
??

2

, Chapter 2. Method of Separation of Variables
Section 2.3
³ ´ ³ ´

2.3.1 (a) u(r, t) = φ(r)h(t) yields φ dh = kh d
r dr . Dividing by kφh yields
1 dh
= 1 d
r dφ = −λ or
³ ´ dt r dr kh dt rφ dr dr
dh 1 d dφ
dt = −λkh and r dr r dr = −λφ.
ST
2 2 2 2
2.3.1 (c) u(x, y) = φ(x)h(y) yields h ddxφ2 + φ ddyh2 = 0. Dividing by φh yields 1 d φ
φ dx2 = − h1 ddyh2 = −λ or
d2 φ d2 h
dx2 = −λφ and dy 2 = λh.
4 4
d φ 1 d φ
2.3.1 (e) u(x, t) = φ(x)h(t) yields φ(x) dh
dt = kh(t) dx4 . Dividing by kφh, yields
1 dh
kh dt = φ dx4 = λ.
UV

2 2 2
1 d2 h
2.3.1 (f) u(x, t) = φ(x)h(t) yields φ(x) ddt2h = c2 h(t) ddxφ2 . Dividing by c2 φh, yields c2 h dt2 = 1 d φ
φ dx2 = −λ.

2.3.2 (b) λ = (nπ/L)2 with L = 1 so that λ = n2 π 2 , n = 1, 2, . . .

2.3.2 (d)
√ √ dφ
(i) If λ > 0, φ = c1 cos λx + c2 sin λx. φ(0) = 0 implies c1 = 0, while dx (L) = 0 implies
IA
√ √ √
c2 λ cos λL = 0. Thus λL = −π/2 + nπ(n = 1, 2, . . .).
(ii) If λ = 0, φ = c1 + c2 x. φ(0) = 0 implies c1 = 0 and dφ/dx(L) = 0 implies c2 = 0. Therefore λ = 0
is not an eigenvalue.
√ √
(iii) If λ < 0, let
√ λ = −s√ and φ = c1 cosh sx + c2 sinh sx. φ(0) = 0 implies c1 = 0 and dφ/dx(L) = 0
_A

implies c2 s cosh sL = 0. Thus c2 = 0 and hence there are no eigenvalues with λ < 0.
2.3.2 (f) The simpliest method is to let x0 = x − a. Then d2 φ/dx02 + λφ = 0 with φ(0) = 0 and φ(b − a) = 0.
2
Thus (from p. 46) L = b − a and λ = [nπ/(b − a)] , n = 1, 2, . . ..
P∞ −k(nπ/L)2 t
2.3.3 From (2.3.30), u(x, t) = n=1 Bn sin nπxL e . The initial condition yields
PP
P∞ 2 L
R
nπx
2 cos L = n=1 Bn sin L . From (2.3.35), Bn = L 0 2 cos 3πx
3πx nπx
L sin L dx.
RL P∞ 2
Bn e−k( )

t 1−cos nπ
2.3.4 (a) Total heat energy = 0
cρuA dx = cρA n=1
L
nπ , using (2.3.30) where Bn
L
satisfies (2.3.35).
RO
2.3.4 (b)
heat flux to right = −K0 ∂u/∂x
total heat flow to right = −K0 A∂u/∂x
¯
heat flow out at x = 0 = K0 A ∂u ¯
¯
∂x x=0
∂u ¯
heat flow out (x = L) = −K0 A ∂x x=L
RL ¯L
d ¯
2.3.4 (c) From conservation of thermal energy, dt u dx = k ∂u ∂u ∂u
∂x ¯ = k ∂x (L) − k ∂x (0). Integrating from
VE
0 0
t = 0 yields
Z L Z L Z t· ¸
∂u ∂u
u(x, t) dx − u(x, 0) dx = k (L) − (0) dx .
∂x ∂x
|0 {z } |0 {z } | 0 {z } | {z }
heat energy initial heat integral of integral of
D?
at t energy flow in at flow out at
x=L x=L
2 p p
2.3.8 (a) The general solution of k ddxu2 = αu (α > 0) is u(x) = a cosh αk x + b sinh αk x. The boundary
condition u(0) = 0 yields a = 0, while u(L) = 0 yields b = 0. Thus u = 0.
??

3
$19.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
StudyStream Howard Community College
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
86
Miembro desde
1 año
Número de seguidores
30
Documentos
1234
Última venta
1 día hace
StudySteam - Verified Solutions, Test Banks &amp; Guides for Medical, Nursing, Business, Engineering, Accounting, Chemistry, Biology &amp; Other Subjects

Welcome to Your Exam Success Headquarters! Tired of endless textbook reading? Our shop is your go-to for high-quality, exam-ready study materials designed for university and college students. We specialize in original publisher content, including solutions manuals, test banks, and comprehensive study guides across a wide range of subjects. Every document is an instant PDF download – no waiting, no fuss! Get immediate access to top-tier academic resources like step-by-step solutions and real test formats to truly ace your coursework and exams. Our materials are perfect for exam preparation, offering insights and practice for every study style. Ready to boost your grades? Dive in and discover your next A+ resource. Found something great? Share our shop with your classmates – let's achieve success together!

Lee mas Leer menos
4.1

9 reseñas

5
5
4
2
3
1
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes