100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

SOLUTIONS MANUAL — Analysis With an Introduction to Proof, 6th Edition — Steven R. Lay & Richard G. Ligo — ISBN 9780137871735

Puntuación
-
Vendido
-
Páginas
102
Grado
A+
Subido en
03-11-2025
Escrito en
2025/2026

The Solutions Manual for Analysis With an Introduction to Proof, 6th Edition by Steven R. Lay & Richard G. Ligo (ISBN 978-0137871735 / 978-0138033163) provides fully worked-out solutions and detailed explanations for nearly every exercise in the text. It follows the official Table of Contents as published by Pearson, ensuring alignment with all chapters and sections. It covers all chapters in order: Chapter 1: Logic and Proof (with sections Logical Connectives, Quantifiers, Techniques of Proof: I, Techniques of Proof: II), Chapter 2: Sets and Functions (sections Basic Set Operations, Relations, Functions, Cardinality, Axioms for Set Theory), Chapter 3: The Real Numbers (sections Natural Numbers and Induction, Ordered Fields, The Completeness Axiom, Topology of the Real Numbers, Compact Sets, Metric Spaces), Chapter 4: Sequences (sections Convergence, Limit Theorems, Monotone Sequences and Cauchy Sequences, Subsequences), Chapter 5: Limits and Continuity (sections Limits of Functions, Continuous Functions, Properties of Continuous Functions, Uniform Continuity, Continuity in Metric Space), Chapter 6: Differentiation (sections The Derivative, The Mean Value Theorem, L’Hôpital’s Rule, Taylor’s Theorem), Chapter 7: Integration (sections The Riemann Integral, Properties of the Riemann Integral, The Fundamental Theorem of Calculus), Chapter 8: Infinite Series (sections Convergence of Infinite Series, Convergence Tests, Power Series), and Chapter 9: Sequences and Series of Functions (sections Pointwise and Uniform Convergence, Application of Uniform Convergence, Uniform Convergence of Power Series). It also includes the Glossary of Key Terms, References, Hints for Selected Exercises, and an Index.

Mostrar más Leer menos
Institución
MATH101
Grado
MATH101











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
MATH101
Grado
MATH101

Información del documento

Subido en
3 de noviembre de 2025
Número de páginas
102
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Analysis with an Introduction to Proof – 6th
Edition
ST

SOLUTIONS
UV
IA

MANUAL
_A
PP
Steven R. Lay
RO
Richard G. Ligo
VE

Comprehensive Solutions Manual for Instructors
D?
and Students
??
© Steven R. Lay & Richard G. Ligo

All rights reserved. Reproduction or distribution without permission is prohibited.



©STUDYSTREAM

, Section 1.1 • Logical Connectives 4


This work is protected by United States copyright laws and is provided solely for
the use of instructors in teaching their courses and assessing student learning.
ST
Dissemination or sale of any part of this work (including on the World Wide Web)
will destroy the integrity of the work and is not permitted. The work and materials
from it should never be made available to students except by instructors using
the accompanying text in their classes. All recipients of this work are expected to
abide by these restrictions and to honor the intended pedagogical purposes and
the needs of other instructors who rely on these materials.
UV
IA

Analysis
_A
with an Introduction to Proof
6th Edition

by Steven R. Lay and Richard G. Ligo
PP



Chapter 1 – Logic and Proof
Solutions to Exercises
RO
Section 1.1 – Logical Connectives

1. (a) False: A statement may be false.
(b) False: A statement cannot be both true and false.
VE
(c) True: See the comment after Practice 1.1.4.
(d) False: See the comment before Example 1.1.3.
(e) False: If the statement is false, then its negation is true.

2. (a) False: p is the antecedent.
(b) True: Practice 1.1.6(a).
D?
(c) False: See the paragraph before Practice 1.1.5.
(d) False: “p whenever q” is “if q, then p”.
(e) False: The negation of p ⇒ q is p ∧ ~ q.

3. Answers in Book: (a) The 3 × 3 identity matrix is not singular.
(b) The function f (x) = sin x is not bounded on R.
??
(c) The function f is not linear or the function g is not linear.
(d) Six is not prime and seven is not odd.
(e) x is in D and f (x) ≥ 5.




Copyright © 2024 by Pearson Education, Inc. or its affiliates

, Section 1.1 • Logical Connectives 5
(f ) (an) is monotone and bounded, but (an) is not convergent.
(g) f is injective, and S is not finite and not denumerable.

4. (a) The function f (x) = x2 – 9 is not continuous at x = 3.
ST
(b) The relation R is not reflexive and not symmetric.
(c) Four and nine are not relatively prime.
(d) x is not in A and x is in B.
(e) x < 7 and f (x) is in C.
(f ) (an) is convergent, but (an) is not monotone or not bounded.
UV
(g) f is continuous and A is open, but f – 1(A) is not open.

5. Answers in book: (a) Antecedent: M is singular; consequent: M has a zero eigenvalue.
(b) Antecedent: linearity; consequent: continuity.
(c) Antecedent: a sequence is Cauchy; consequent: it is bounded.
(d) Antecedent: y > 5; consequent: x < 3.
IA
6. (a) Antecedent: it is Cauchy; consequent: a sequence is convergent.
(b) Antecedent: boundedness; consequent: convergence.
(c) Antecedent: orthogonality; consequent: invertability.
(d) Antecedent: K is closed and bounded; consequent: K is compact.
_A
7 and 8 are routine.

9. Answers in book: (a) T ∧ T is T. (b) F ∨ T is T. (c) F ∨ F is F. (d) T ⇒ T is T. (e) F ⇒ F is T.
(f) T ⇒ F is F. (g) (T ∧ F) ⇒ T is T. (h) (T ∨ F) ⇒ F is F. (i) (T ∧ F) ⇒ F is T. (j) ~ (F ∨ T) is F.

10. (a) T ∧ F is F. (b) F ∨ F is F. (c) F ∨ T is T. (d) T ⇒ F is F. (e) F ⇒ F is T.
PP
(f) F ⇒ T is T.
(g) (F ∨ T) ⇒ F is F. (h) (T ⇒ F) ⇒ T is T. (i) (T ∧ T) ⇒ F is F. (j) ~ (F ∧ T) is T.

11. Answers in book: (a) p ∧ ~ q; (b) ( p ∨ q) ∧ ~ ( p ∧ q); (c) ~ q ⇒ p; (d) ~ p ⇒ q; (e) p ⇔ ~ q.

12. (a) n ∧ ~ m; (b) ~ m ∧ ~ n or ~ (m ∨ n); (c) n ⇒ m; (d) m ⇒ ~ n; (e) ~ (m ∧ n).
RO
13. (a) and (b) are routine. (c) p ∧ q.

14. These truth tables are all straightforward. Note that the tables for (c) through (f ) have 8 rows because there are 3
letters and therefore 23 = 8 possible combinations of T and F.
VE
Section 1.2 - Quantifiers

1. (a) True: See the comment before Example 1.2.1.
(b) False: The negation of a universal statement is an existential statement.
(c) True: See the comment before Example 1.2.1.
D?
2. (a) False: It means there exists at least one.
(b) True: Example 1.2.1.
(c) True: See the comment after Practice 1.2.4.

3. (a) No pencils are red.
??
(b) Some chair does not have four legs.
(c) Someone on the basketball team is over 6 feet 4 inches tall.
(d) ∀ x > 2, f (x) ≠ 7.




Copyright © 2024 by Pearson Education, Inc. or its affiliates

, Section 1.2 • Quantifiers 6
(e) ∃ x in A ∋ ∀ y > 2, f ( y) ≤ 0 or f ( y) ≥ f (x).
(f ) ∃ x ∋ x > 3 and ∀ ε > 0, x2 ≤ 9 + ε.

4. (a) Someone does not like Robert.
ST
(b) No students work part-time.
(c) Some square matrices are triangular.
(d) ∀ x in B, f (x) ≤ k.
(e) ∃ x ∋ x > 5 and 3 ≤ f (x) ≤ 7.
(f ) ∃ x in A ∋∀ y in B, f (y) ≤ f (x).
UV
5. Hints in book: The True/False part of the answers.
(a) True. Let x = 3. (b) True. 4 is less than 7 and anything smaller than 4 will also be less than 7.
(c) True. Let x = 5. (d) False. Choose x ≠ ± 5 such as x = 2.
(e) True. Let x = 1, or any other real number.
(f ) True. The square of a real number cannot be negative.
(g) True. Let x = 1, or any real number other than 0. (h) False. Let x = 0.
IA
6. (a) True. Let x = 5. (b) False. Let x = 3. (c) True. Choose x ≠ ± 3 such as x = 2.
(d) False. Let x = 3. (e) False. The square of a real number cannot be negative.
(f ) False. Let x = 1, or any other real number. (g) True. Let x = 1, or any other real number.
_A
(h) True. x – x = x + (– x) and a number plus its additive inverse is zero.

7. Answers in book: (a) You can use (ii) to prove (a) is true. (b) You can use (i) to prove (b) is true.
Additional answers: (c) You can use (ii) to prove (c) is false. (d) You can use (i) to prove (d) is false.

8. The best answer is (c).
PP
9. Hints in book: The True/False part of the answers.
(a) False. For example, let x = 2 and y = 1. Then x > y.
(b) True. For example, let x = 2 and y = 3. Then x ≤ y.
(c) True. Given any x, let y = x + 1. Then x ≤ y.
(d) False. Given any y, let x = y + 1. Then x > y.
RO
10. (a) True. Given any x, let y = 0.
(b) False. Let x = 0. Then for all y we have xy = 0 ≠ 1.
(c) False. Let y = 0. Then for all x we have xy = 0 ≠ 1.
(d) True. Given any x, let y = 1. Then xy = x.
VE
11. Hints in book: The True/False part of the answers.
(a) True. Let x = 0. Then given any y, let z = y. (A similar argument works for any x.)
(b) False. Given any x and any y, let z = x + y + 1.
(c) True. Let z = y – x.
(d) False. Let x = 0 and y = 1. (It is a true statement for x ≠ 0.)
(e) True. Let x ≤ 0.
D?
(f ) True. Take z ≤ y. This makes “z > y ” false so that the implication is true. Or, choose z > x + y.

12. (a) True. Given x and y, let z = x + y.
(b) False. Let x = 0. Then given any y, let z = y + 1.
(c) True. Let x = 1. Then given any y, let z = y. (Any x ≠ 0 will work.)
(d) False. Let x = 1 and y = 0. (Any x ≠ 0 will work.)
??
(e) False. Let x = 2. Given any y, let z = y + 1. Then “z > y ” is true, but “z > x + y ” is false.
(f ) True. Given any x and y, either choose z > x + y or z ≤ y.




Copyright © 2024 by Pearson Education, Inc. or its affiliates
$19.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
StudyStream Howard Community College
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
85
Miembro desde
1 año
Número de seguidores
30
Documentos
1234
Última venta
1 semana hace
StudySteam - Verified Solutions, Test Banks &amp; Guides for Medical, Nursing, Business, Engineering, Accounting, Chemistry, Biology &amp; Other Subjects

Welcome to Your Exam Success Headquarters! Tired of endless textbook reading? Our shop is your go-to for high-quality, exam-ready study materials designed for university and college students. We specialize in original publisher content, including solutions manuals, test banks, and comprehensive study guides across a wide range of subjects. Every document is an instant PDF download – no waiting, no fuss! Get immediate access to top-tier academic resources like step-by-step solutions and real test formats to truly ace your coursework and exams. Our materials are perfect for exam preparation, offering insights and practice for every study style. Ready to boost your grades? Dive in and discover your next A+ resource. Found something great? Share our shop with your classmates – let's achieve success together!

Lee mas Leer menos
4.1

9 reseñas

5
5
4
2
3
1
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes