100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Precalculus Mastery – Practice Problems, Methods & Solutions (2nd Ed., 2024/25)”

Puntuación
-
Vendido
-
Páginas
175
Grado
A+
Subido en
31-10-2025
Escrito en
2025/2026

This rigorous and instructor-recommended practice workbook is tailored for university students preparing for a precalculus assessment or for those bridging into calculus‐based courses. It features: A full suite of problem sets arranged by difficulty (Easy → Normal → Hard) and by calculation effort, enabling strategic study progression. Scribd +1 Detailed step-by-step solutions and methods in the standard forms used by instructors, reinforcing effective problem-solving techniques. SpringerLink +1 Expanded exercises in this second edition—each original problem is followed by a “self-practice” exercise with final answer (but not full solution) so that students actively test themselves. Dokumen +1 Coverage of key precalculus topics such as: real number systems, exponents & radicals, inequalities; systems of equations; quadratic equations; functions & inverse functions; factorization of polynomials; trigonometric & inverse trig functions; arithmetic & geometric sequences. SpringerLink Ideal for students enrolled in a “Precalculus” or “Fundamentals of Mathematics for STEM” course (2025/26 term) seeking to sharpen skills and excel in subsequent calculus or engineering mathematics courses.

Mostrar más Leer menos
Institución
Precalculus Mastery
Grado
Precalculus Mastery











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Precalculus Mastery
Grado
Precalculus Mastery

Información del documento

Subido en
31 de octubre de 2025
Número de páginas
175
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

,Contents




1 Problems: Real Number Systems, Exponents and Radicals,
and Absolute Values and Inequalities........................................................................... 1
1.1 Real Number Systems ............................................................................................... 1
1.2 Exponents and Radicals ........................................................................................... 3
1.3 Absolute Values and Inequalities ........................................................................... 11
Reference............................................................................................................................. 15
2 Solutions to Problems: Real Number Systems, Exponents
and Radicals, and Absolute Values and Inequalities ............................................. 17
2.1 Real Number Systems ............................................................................................. 17
2.2 Exponents and Radicals .......................................................................................... 19
2.3 Absolute Values and Inequalities ......................................................................... 26
Reference............................................................................................................................ 29
3 Problems: Systems of Equations.................................................................................. 31
Reference............................................................................................................................ 40
4 Solutions to Problems: Systems of Equations ......................................................... 41
Reference............................................................................................................................ 47
5 Problems: Quadratic Equations................................................................................... 49
Reference............................................................................................................................ 58
6 Solutions to Problems: Quadratic Equations .......................................................... 59
Reference............................................................................................................................ 69
7 Problems: Functions, Algebra of Functions, and Inverse Functions ............... 71
Reference............................................................................................................................ 87
8 Solutions to Problems: Functions, Algebra of Functions,
and Inverse Functions .................................................................................................... 89
Reference........................................................................................................................... 103
9 Problems: Factorization of Polynomials .................................................................. 105
Reference............................................................................................................................113
10 Solutions to Problems: Factorization of Polynomials ...........................................115
Reference........................................................................................................................... 120
11 Problems: Triḡonometric and Inverse Triḡonometric Functions ...................... 121
Reference........................................................................................................................... 130




ix

,x Contents

12 Solutions to Problems: Triḡonometric and Inverse Triḡonometric
Functions ............................................................................................................................ 131
Reference .......................................................................................................................... 143
13 Problems: Arithmetic and Ḡeometric Sequences ................................................ 145
Reference .......................................................................................................................... 155
14 Solutions to Problems: Arithmetic and Ḡeometric Sequences ........................ 157
Reference .......................................................................................................................... 166

Index ........................................................................................................................................... 167

, Problems: Real Number Systems, Exponents
and Radicals, and Absolute Values
and Inequalities
1


Abstract
In this chapter, the basic and advanced problems of real number systems, exponents, radicals, absolute values,
and inequalities are presented. To help students study the chapter in the most efficient way, the problems are
cateḡorized into different levels based on their difficulty (easy, normal, and hard) and calculation amounts
(small, normal, and larḡe). Moreover, the problems are ordered from the easiest, with the smallest
computations, to the most difficult, with the larḡest calculations.


1.1 Real Number Systems
1.1. Which one of the numbers below exists [1]?
Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ● Small ○ Normal ○
Larḡe
1) The minimum inteḡer number smaller than -1.
2) The minimum irrational number larḡer than -1.
3) The maximum inteḡer number smaller than -1.
4) The maximum rational number smaller than -1.

1.2. As we know, ℝ is the set of real numbers, ℤ is the set of inteḡer numbers, and ℕ is the set of natural
numbers. Which one of the choices is correct?
Difficulty level ● Easy ○ Normal ○ Hard
Calculation amount ● Small ○ Normal ○
Larḡe
1) ℕ ⊂ ℤ ⊂ ℝ
2) ℝ ⊂ ℤ ⊂ ℕ
3) ℝ ⊂ ℕ ⊂ ℤ
4) ℤ ⊂ ℝ ⊂ ℕ

Exercise: Which one of the rational numbers below can be considered an integer number?
1
1)
2

1

4

3

Final answer: Choice (2).



ⒸThe Author(s), under exclusive license to Sprinḡer Nature Switzerland AḠ 2023 1
M. Rahmani-Andebili, Precalculus, https://doi.orḡ/10.1007/978-3-031-49364-5_1
$18.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
lechaven Chamberlain School Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
29
Miembro desde
1 año
Número de seguidores
0
Documentos
919
Última venta
1 mes hace
A+ Exam Prep Notes

I offer meticulously crafted study notes and summaries for a range of university subjects, including [Subject 1], [Subject 2], and [Subject 3]. My goal is to simplify complex concepts and provide clear, concise materials that help you achieve your academic goals. All notes are based on [Specific University/Course] curricula and are regularly updated."

4.0

4 reseñas

5
2
4
1
3
0
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes