SOLUTIONS
, CONTENTS
Preface …………………………………………...……………………………………….. 1
Chapter 2 Mathematical Concepts in Kinematics ……………………………………….. 2
Chapter 3 Fundamental Concepts in Kinematics ……………………………………….. 8
Chapter 4 Kinematic Analysis of Planar Mechanisms..................................................................19
Chapter 5 Dimensional Synthesis .................................................................................................81
Chapter 6 Static Force Analysis of Planar Mechanisms .............................................................159
Chapter 7 Dynamic Force Analysis of Planar Mechanisms ........................................................210
Chapter 8 Design & Kinematic Analysis of Gears .....................................................................288
Chapter 9 Design & Kinematic Analysis of Disk Cams .............................................................327
Chapter 10 Kinematic Analysis of Spatial Mechanisms ..............................................................364
Chapter 11 Introduction to Robotic Manipulators .......................................................................409
@
@SSeeisismmicicisisoolalatitoionn
, CHAPTER 2
Problem 2.1 Statement:
Formulate an equation for the vector loop illustrated in Figure P.2.1. Consider that vector V j
always lies along the real axis.
Figure P.2.1 Vector loop (3 vectors where V j changes length) in 2-D complex space
Problem 2.1 Solution:
Taking the clockwise sum of the vector loop in Figure P.2.1 produces the equation
V1ei1 +V2 ei2 − Vj = 0 .
When expanded and separated into real and imaginary terms, the vector loop equation becomes
V1 cos1 +V2 cos2 − Vj = 0
.
V1 sin 1 +V2 sin 2 = 0
Problem 2.2 Statement:
Formulate an equation for the vector loop illustrated in Figure P.2.2. Consider that vector V j
always lies along the real axis and vector V3 is always perpendicular to the real axis.
@Seismi2cisolation
@Seismicisolation
, Figure aP.2.2 aVector aloop a(4 avectors awhere changes alength) ain a2-D acomplex aspace
a Vaj
Problem a2.2 aSolution:
Taking athe aclockwise asum aof athe avector aloop ain aFigure aP.2.2 aproduces athe aequation
V aei11 a +V ae2i2 a − aV3 a − aV
j a = a0 a.
When aexpanded aand aseparated ainto areal aand aimaginary aterms, athe avector aloop aequation
abecomes
V1 a cos1 a +V2 a cos2 a − aVj a= a0
.
V1 asin a1 a +V2 a sin a2 a − aV3 a = a0
Problem a2.3 aStatement:
Calculate athe afirst aderivative aof athe avector aloop aequation asolution afrom aProblem a2.2. a Consider
only aangles a 1 a, and avector from aProblem a2 ato abe atime-dependent.
a 2 a Vaj
Problem a2.3 aSolution:
Differentiating athe avector aloop aequation asolution afrom aProblem a2.2 aproduces athe aequation
i1V1ei1 + i2V2ei2 − V j = 0.
When aexpanded aand aseparated ainto areal aand aimaginary aterms, athe avector aloop aequation
abecomes
@Seismi3cisolation
@Seismicisolation