100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Stochastic Processes With R An Introduction 1st edition by Olga Korosteleva

Puntuación
-
Vendido
-
Páginas
42
Grado
A+
Subido en
30-10-2025
Escrito en
2025/2026

Solution Manual for Stochastic Processes With R An Introduction 1st edition by Olga Korosteleva

Institución
Stochastic Processes
Grado
Stochastic Processes











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Stochastic Processes
Grado
Stochastic Processes

Información del documento

Subido en
30 de octubre de 2025
Número de páginas
42
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ALL 9 CHAPTER COVERED




SOLUTIONS MANUAL

, TABLE OF CONTENTS
CHAPTER 1 ……………………………………………………………………………………. 3
CHAPTER 2 ……………………………………………………………………………………. 31
CHAPTER 3 ……………………………………………………………………………………. 41
CHAPTER 4 ……………………………………………………………………………………. 48
CHAPTER 5 ……………………………………………………………………………………. 60
CHAPTER 6 ……………………………………………………………………………………. 67
CHAPTER 7 ……………………………………………………………………………………. 74
CHAPTER 8 ……………………………………………………………………………………. 81
CHAPTER 9 ……………………………………………………………………………………. 87




2

, CHAPTER 1
0.3 0.4 0.3
EXERCISE 1.1. For a Markov chain with a one-step transition probability matrix � 0.2 0.3 0.5 �
0.8 0.1 0.1
we compute:

(a) 𝑃𝑃(𝑋𝑋3 = 2 |𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) = 𝑃𝑃(𝑋𝑋3 = 2 | 𝑋𝑋2 = 3) (by the Markov property)
= 𝑃𝑃32 = 0.1.
(b) 𝑃𝑃(𝑋𝑋4 = 3 |𝑋𝑋0 = 2, 𝑋𝑋3 = 1) = 𝑃𝑃(𝑋𝑋4 = 3 | 𝑋𝑋3 = 1) (by the Markov property)
= 𝑃𝑃13 = 0.3.
(c) 𝑃𝑃(𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3, 𝑋𝑋3 = 1) = 𝑃𝑃(𝑋𝑋3 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) 𝑃𝑃(𝑋𝑋2 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃(𝑋𝑋3 = 1 | 𝑋𝑋2 = 3) 𝑃𝑃(𝑋𝑋2 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by the Markov property)

= 𝑃𝑃31 𝑃𝑃23 𝑃𝑃12 𝑃𝑃(𝑋𝑋0 = 1) = (0.8)(0.5)(0.4)(1) = 0.16.
(d) We first compute the two-step transition probability matrix. We obtain

0.3 0.4 0.3 0.3 0.4 0.3 0.41 0.27 0.32
𝐏𝐏(2) = � 0.2 0.3 0.5 � � 0.2 0.3 0.5 � = � 0.52 0.22 0.26�.
Now we write 0.8 0.1 0.1 0.8 0.1 0.1 0.34 0.36 0.30
𝑃𝑃(𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3, 𝑋𝑋5 = 1) = 𝑃𝑃(𝑋𝑋5 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3) 𝑃𝑃(𝑋𝑋3 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃(𝑋𝑋5 = 1 | 𝑋𝑋3 = 3) 𝑃𝑃(𝑋𝑋3 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by the Markov property)
(2) (2) 𝑃𝑃(𝑋𝑋 = 1) = (0.34)(0.26)(0.4)(1) = 0.03536.
𝑃𝑃

= 𝑃𝑃31 𝑃𝑃23 12 0

EXERCISE 1.2. (a) We plot a diagram of the Markov chain.

#specifying transition probability matrix
tm<- matrix(c(1, 0, 0, 0, 0, 0.5, 0, 0, 0, 0.5, 0.2, 0, 0, 0, 0.8,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0), nrow=5, ncol=5, byrow=TRUE)

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram
library(diagram)
plotmat(tm.tr, arr.length=0.25, arr.width=0.1, box.col="light blue",
box.lwd=1, box.prop=0.5, box.size=0.12, box.type="circle", cex.txt=0.8,
lwd=1, self.cex=0.3, self.shiftx=0.01, self.shifty=0.09)




3

, State a2 ais areflective. aThe achain aleaves athat astate ain aone astep. aTherefore, ait aforms aa aseparate
atransient a class athat ahas aan ainfinite aperiod.


Finally, astates a3, a4, aand a5 acommunicate aand athus abelong ato athe asame aclass. aThe achain acan
areturn ato a either astate ain athis aclass ain a3, a6, a9, aetc. asteps, athus athe aperiod ais aequal ato a3.
aSince athere ais aa apositive a probability ato aleave athis aclass, ait ais atransient.



The aR aoutput asupports athese afindings.

#creating aMarkov achain aobject
alibrary(markovchain)
mc<- anew("markovchain", atransitionMatrix=tm,states=c("1", a"2", a"3", a"4", a"5"))

#computing aMarkov achain acharacteristics
arecurrentClasses(mc)

"1"

transientClasses(mc)

"2"

"3" a"4" a"5"

absorbingStates(mc)

"1"

(c) Below awe asimulate athree atrajectories aof athe achain athat astart aat aa arandomly achosen astate.
4
$15.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Clayjohnson California State University - Channel Islands
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
81
Miembro desde
2 año
Número de seguidores
19
Documentos
1922
Última venta
3 días hace
A+ revision material

A+ Revision Material refers to educational content and resources designed to help students prepare for and excel in their academic assessments, particularly A+ graded exams or courses. These materials typically include study guides, practice exams, flashcards, and other resources that condense and simplify complex subject matter to aid in effective revision. They are created to enhance a student's understanding of the material, reinforce key concepts, and improve their chances of achieving top grades. A+ Revision Material is commonly used by students at various levels of education, from high school to college and beyond, to boost their knowledge and confidence before important examinations.

Lee mas Leer menos
4.9

195 reseñas

5
187
4
1
3
2
2
1
1
4

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes