100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Elementary Linear Algebra (6th Ed., 2016) – Supplementary Web Sections – by Andrilli

Puntuación
-
Vendido
-
Páginas
120
Grado
A+
Subido en
30-10-2025
Escrito en
2025/2026

INSTANT PDF DOWNLOAD — Official Supplementary Web Sections for Elementary Linear Algebra (6th Edition) by Andrilli & Hecker. Expanded notes, extra proofs, and worked examples covering vectors & matrices, linear systems, determinants, eigenvalues/eigenvectors, diagonalization, linear transformations, orthogonality & least squares, SVD/numerical topics, and real applications. Great for homework help, recitations, and exam prep; clean layout, instructor-style explanations, and problem sets with solutions guidance. linear algebra supplement, Andrilli web sections, extra chapter notes, matrices and determinants, Gaussian elimination steps, eigenvalues eigenvectors guide, diagonalization practice, linear transformations notes, orthogonality and least squares, Gram–Schmidt solutions, SVD introduction, numerical linear algebra basics, proofs and examples PDF, homework help linear algebra, exam prep linear algebra, vector spaces review, matrix factorization tips, applications of linear algebra, engineering math supplement, college algebra textbook companion

Mostrar más Leer menos
Institución
Solution Manual
Grado
Solution manual

















Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Solution manual
Grado
Solution manual

Información del documento

Subido en
30 de octubre de 2025
Número de páginas
120
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

, 012346786949 
9419319419486 69
 9464344
4 4


819467!11234194"16219

#
9464344
4 4
$
%969&14


$

9464344
4 4
$
'1
(' 96234) 9*194+4 19'1


$#
9464344
4 4
,
"6198196913%6),#
9464344
4 4
#
63-9%(.4/ 4) 67 941+6)64946
 077449131169
2$
9464344
4 4#,
36)446939946&14




#
9464344
4 4


4
394




, 0
12 34 56
87 3789
2 3 
6
34 56 37 4 5
5



0!"#$

%

&'())*+,(-.+-/*0)12,*0(234'(+'125230*2657*821(3(20,-5-980-1 2.>235,(+
:*-1*,05;<*4(336()+9))2.235,(+0*=0*)*.,2,(-.)8-03(.*)2.6=32.*)(. ;<*
4(3323)-(.,0-69+*2.*4-=*02,(-.8-0/*+,-0)(.>?,'*+0-))=0-69+,?2.6)'-4
(,)9)*893.*))(.:*-1*,0(+2.6='5)(+23+23+932,(-.);
@ AAB
CDA

EAFG
<*7*:(.75H.6(.:*I92,(-.),-6*)+0(7*2:(/*.3(.*(.>;J3(.*()6*,*01(.*6
9.(I9*35-.+*2=-(.,-.,'*3(.*2)4*332)26(0*+,(-.8-0,'*3(.*20*K.-4.;
L-.)(6*0,'*8-33-4(.:*M21=3*;
NOPQRSTU <*4(33H.6*I92,(-.),'2,0*=0*)*.,,'*3(.*=2))(.:,'0-9:','*-0(:(.VWXWXWY(.
,'*6(0*+,(-.-8,'*/*+,-0Z[X\]X^_`)**a(:90*bc;d-,(+*,'2,2=-(.,()-.,'*
3(.*(82.6-.35(8(,(),'*,*01(.23=-(.,-82/*+,-0,'2,),20,)2,VWXWXWY2.6()
=20233*3,-Z[X\]X^_;e/*05)9+'/*+,-0()?-8+-90)*?2)+2320193,(=3*-8Z[X\]X^_?
2.6'*.+*'2),'*8-01fZ[X\]X^_gZfX\]fX^f_?8-0)-1*0*23.917*0f;&'*0*8-0*?
,'*=-(.,)-.,'*3(.*20*233-8,'*8-01VhXiXjY?4'*0*hgfXig\]fX2.6jg^f;
&2K*.,-:*,'*0?,'*)*,'0***I92,(-.)+-1=3*,*356*)+0(7*,'*=-(.,)35(.:-.,'*
3(.*; k
l
€
u
vwxyztxyu{ 
~
}
| z}
t zt z|
w zw
z| zt zw zw w t | } ~ m
w
t zt nopqrrmostpqrrloup
| z|
n}
‚ƒ„†‡ ˆ‚‰†Š‹ŒŒ‚‰ƒŽ„ƒŽŽ†‚ƒ‚‰‚‰Ž†‚†‘‚‰’Z[X\]X^_
&'**I92,(-.)8-0,'*3(.*(.eM21=3*b20*+233*6“66”4 24•6235;&'*
/20(273*f(.,'*)**I92,(-.)()+233*6,'*“66”44;–.:*.*023?,-H.6=2021*,0(+
*I92,(-.)8-0,'*3(.*=2))(.:,'0-9:','*=-(.,Vh—Xi—Xj—Y(.,'*6(0*+,(-.-8˜g
Z™XšX›_?4*3--K8-0,'*,*01(.23=-(.,)-8233/*+,-0)7*:(..(.:2,Vh—Xi—Xj—Y,'2,
20*=20233*3,-˜`)**a(:90*œc;
J.5/*+,-0=20233*3,-˜()-8,'*8-01 Z™fXšfX›f_?8-0)-1*0*23.917*0f?2.6
)(.+*
Zh—Xi—Xj—_Z™fXšfX›f_gZh—™fXi—šfXj—›f_X
,'*,*01(.23=-(.,-8)9+'2/*+,-0'2),'*8-01Vh—™fXi—šfXj—›fY;&'*0*8-0*?
4*'2/*=0-/*6,'*8-33-4(.:,'*-0*1ž


Ÿ ¡¢£SS£¤¥T¦§T¢¨NSTQT ©P¢ª«£TP¢ŸS¬T­¢P®¯©°T¡±
²³Rª¢£¬°© +́µ¶U·NS¸T¹£T¢®«©¡±ŸSSº£¬°©¸ºT¸T¢¹T¡±

, 0
1 3457
8384597
1314567
4
8414
96

14 8946 6 8
9
4




 



! "#$%&$%'$()*!+,%-%./
0123425 6
7898:;<9=>;?@8<=ABCDA9<E;F=B;G=BHI J8CC=BK<E9A@KE"#$%&$%'$(=B<E;
L=9;><=ABAD+,%-%./89;K=M;BNO
#P#$Q,R% &P&$Q-R% 'P'$Q.R%
SE;9;R9;J9;C;B<C89;8FJ898:;<;9TUE8<=CV<E;JA=B<C"#%&%'(=BHISE=>EF=;
ABG89;J9;>=C;FO<EAC;SE=>EC8<=CDO<E;C;;?@8<=ABCDA9CA:;9;8FB@:N;9RT
WDS;<E=BXAD<E;J898:;<;9R8C9;J9;C;B<=BK<=:;Y;TKTV=BC;>ABLCZV8BL=DS;
=:8K=B;8BAN[;><C<89<=BK8<"#$%&$%'$(8<RP\V<98M;F=BK<AB;SJAC=<=ABC8FABK
<E;F=B;G8C<E;M8F@;ADR>E8BK;CV<E;B<E;J898:;<9=>;?@8<=ABCDA9#V&V8BL'
=BL=>8<;<E;>AA9L=B8<;CAD<E;AN[;><8<<=:;R8C=<<98M;FC8FABKGT]A<;<E8<R
>8BN;B;K8<=M;Y9;J9;C;B<=BK^J8C<_<=:;Z8CS;FF8CJAC=<=M;Y^D@<@9;_<=:;ZT
`;=FF@C<98<;UE;A9;:aS=<EC;M;98F;b8:JF;CT
cdefghij `;S=FFkBLJ898:;<9=>;?@8<=ABCDA9<E;F=B;J8CC=BK<E9A@KE"lm%n%o(=B<E;
L=9;><=ABAD<E;M;><A9+p%lq%r/V8BL<E;B@C;<E;C;;?@8<=ABC<AkBLCA:;A<E;9
JA=B<CAB<E;F=B;TsOUE;A9;:aV<E;8JJ9AJ9=8<;;?@8<=ABC89;t
#PlmQpR% &PnlqR% 'PoQrR%
SE;9;RuHTvEAAC=BK89N=<989OM8F@;CDA9R=B<E;C;;?@8<=ABCS=FFJ9AL@>;<E;
>AA9L=B8<;CADA<E;9JA=B<CAB<E;F=B;TwA9;b8:JF;VF;<<=BKRP oO=;FLC<E;
JA=B<"m%p%n(TUE=C=C<E;<;9:=B8FJA=B<AD<E;M;><A9o+p%lq%r/E8M=BK=B=<=8F
JA=B<"lm%n%o(TvEAAC=BKRPlmJ9AL@>;C<E;JA=B<"lo\%oq%loo(TUE=C=C<E;
<;9:=B8FJA=B<AD<E;M;><A9lm+p%lq%r/E8M=BK=B=<=8FJA=B<"lm%n%o(T x
WB<E;B;b<;b8:JF;VS;=FF@C<98<;EAS<AK;<<E;;?@8<=ABDA98F=B;SE;B
<SAJA=B<CAB<E;F=B;89;K=M;BTUE=C;b8:JF;8FCACEASC<E8<<E;J898:;<9=>
9;J9;C;B<8<=ABAD8F=B;=CBA<@B=?@;T
cdefghiy `;S=FF>8F>@F8<;J898:;<9=>;?@8<=ABCDA9<E;F=B;=BHI J8CC=BK<E9A@KE"n%o%o(
8BL"lq%\%z(TWB<E=C>8C;VS;89;BA<;bJF=>=<FOK=M;B<E;L=9;><=ABAD<E;F=B;T
UAkBL8M;><A9=B<E=CL=9;><=ABVS;<8X;AB;AD<E;JA=B<CVC8OV"lq%\%z(V8C<E;
{|}~hh€i‚ƒi~„chifi| e~†‡|ie~{hˆi‰~eŠ‹ Œi}
Ž> chii~j‘’“”{hh•ˆŒ •ii~i}

, 0
12131456712384293 73 843 3 124567123 11593 91 3172
37  




 28!12"3137 37"3 #13
3 67123 8# $293433 644 31 %!43172&7 3 512 4
'(
) *() + )
# ),-.53 2431582731 343# 7!59 4 !9 43 1213145
67123429 

43 3 1245671231245!54312"3 644 31 %!43172
 171 "1!3 91 317237 

/# 018429# #7!593 2
7234123 453 243 644 31 %!43172
'
3 *3 +
( 3
# 3,-4 !94915 2341425 &7 3 644 3 123  5433
%!4317237 6 416 3 &43343 %!4545!7&3429)972737 672937
3 4 67123723 51277 84658)
7 6729373 121314567123
8# 15 3
679! 

9279 37679! 

&7 3
$337&644 31 %!431728# !3! ) :
923 543 846582731 343# 4577!59 4 !9422726 7454
!53165 7&

43 91 317237926431!5481&# 77 4!213
37 123 91 31727&

43 91 31723783 4275!3 45! 7&
3 644 3 )#7!59 6 233 91342 34594572"3 512 &73 1213145
67123
923 283 84658# 7219 3#7123 312"51284297# 7#37$293
671237&123 31724293 42"5&7 923# 23 512;731 343# 2
46417&913123512123 383 4 43733#791312342"5&7 98429
3  3>#742"54 !665 237& 4 73 <343183 142"5  4! !
37=
4 9$2 3 ?@ABCDCEFCC@EFGHM@ECIJCKEH@ABH@C J43 121!
7&3  3#742"5/183 42"5 3431L N 49142O
>14 42$2931
42"5234P12"437 123 91 31727&4 512845!54312"3 42"523# 2
3  3784293 234P12"3 !665 23442"51&24
QRSTUVWX Y 3Z[ 429ZN 2 3 512#13 644 31 %!43172
Z[\'=
)*(])+() # ),-
429 ZN\'^(3*]3 +](]3_ # 3,-_
713853!93 12 1&3  512123 3842981&78# 9279 &7 Z[
429ZN 37123 38# !3$2945!&7 3429)! 3434557&3 &7557#12"
%!431724 1!53427!5431$9\
à =
)  ^(3
b (] ) ]3_
() ](]3
c7512"&7 )123 $37&3  d159) d3( Nc!231
3!312"3112373
729 %!43172679!(]e3(e]e3#e1 "13 &7 8
N
)/# 014  P3433  45!7&3429)431&3 319 %!431724
# 55/3 159

184293 &7 83 51297123 38429317!# 2d
3 429)  1123 31721433 67123 '*+ 
12-
/# 01
; 838# 93 12 3 42"523# 23  512797318# $29491 3172
37 &7 4 51284293 2! 3 973679!33745!543 3 712 7&3
42"5 f23# 23 .37 123 91 31727&Z[ 1
]
/24! 
8]8
4 3 7g1237&3 644 3 123 644 31 %!43172&7 Z[14294
37 123 91 31727&ZN 1]
/24! 88]4 3 7g1237&3
hijklVVlmnWopWkqQVWTWirSkstliWSkhVuWvkSwxryWjz
{|Uskluyr} ~€QV‚WƒlWkwtrjzhVV„luyr‚„W‚WkƒWjz

,
, Table of Contents
Lines and Planes and the Cross Product in ℝ3………………… 1
Answers to Selected Exercises …………………………. 27

Change of Variables and the Jacobian …………………….… 29
Answers to Selected Exercises …………………….…… 41

Function Spaces ……………………………….…………….. 42
Answers to Selected Exercises …………….…………… 47

Max-Min Problems in ℝn and the Hessian Matrix ………….. 49
Answers to Selected Exercises …………………………. 57

Jordan Canonical Form ……………………………………… 59
Answers to Selected Exercises ……………………….… 79

Solving First-Order Systems of Linear Homogeneous
Differential Equations ……………….……… 84
Answers to Selected Exercises ………………………… 95

Isometries on Inner Product Spaces………………………..... 97
Answers to Selected Exercises………………………... 110

Index ……………………………………………………….. 111

, 1

Lines and Planes and the Cross
Product in R3
Prerequisite: Section 1.2: The Dot Product
This section covers material which may already be familiar to you from analytic
geometry. We will discuss analytic representations for lines and planes in R3 . We
will also introduce a new operation for vectors in R3 , the cross product, and show
its usefulness in geometric and physical calculations.

I Parametric Representation of a Line in R3
We begin by finding equations to describe a given line in R3 . A line is determined
uniquely once a point on the line as well as a direction for the line are known.
Consider the following example.


Example 1 We will find equations that represent the line passing through the origin (0 0 0) in
the direction of the vector [1 −2 7] (see Figure 1). Notice that a point is on the
line if and only if it is the terminal point of a vector that starts at (0 0 0) and is
parallel to [1 −2 7]. Every such vector is, of course, a scalar multiple of [1 −2 7],
and hence has the form [1 −2 7] = [ −2 7], for some real number . Therefore,
the points on the line are all of the form (  ), where  =   = −2 and  = 7.
Taken together, these three equations completely describe the points lying on the
line. ¥

z
8
7
(1, -2, 7) 6
5
4
3 -4
2 -3
-2
1
-1
-3 -2 -1 1 2 3 4 5 y
1 -1
2 -2 x=t, y=-2t, z=7t
3 -3
x 4


Figure 1 Line passing through the origin in the direction of [1 −2 7]

The equations for the line in Example 1 are called parametric equations. The
variable  in these equations is called the parameter. In general, to find parametric
equations for the line passing through the point (0  0  0 ) in the direction of v =
[  ], we look for the terminal points of all vectors beginning at (0  0  0 ) that
are parallel to v (see Figure 2).
Any vector parallel to v is of the form [  ], for some real number , and
since
[0  0  0 ] + [  ] = [0 +  0 +  0 + ]
the terminal point of such a vector has the form (0 +  0 + 0 +). Therefore,
we have proved the following theorem:




Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
Copyright °c 2016 Elsevier, Ltd. All Rights Reserved.

, 2

z x = x0 + at,
y = y0 + bt,
z = z0 + ct


(x0, y0, z0)
(a, b, c)


[a, b, c]
z0 y0 c
y
b
a
x0


x

Figure 2 Line passing through (0  0  0 ) in the direction [  ]


THEOREM 1
Parametric equations for the line  in R3 passing through (0  0  0 ) in the
direction of [  ] are given by

 = 0 +   = 0 +   = 0 + 

where  represents a real parameter. That is, the points (  ) in R3 which lie
on  are precisely those which satisfy these equations for some real number .

If we think of the parameter  as representing time (e.g., in seconds), and if we
imagine an object starting at (0  0  0 ) at  = 0, traveling to new positions along
the line  as the value of  changes, then the parametric equations for , , and 
indicate the coordinates of the object at time  as it travels along . Note that 
can be negative (representing “past” time) as well as positive (“future” time).
We illustrate Theorem 1 with several examples.


Example 2 We will find parametric equations for the line passing through (−2 7 1) in the
direction of the vector [4 −3 6], and then use these equations to find some other
points on the line. By Theorem 1, the appropriate equations are:

 = −2 + 4  = 7 − 3  = 1 + 6

where  ∈ R. Choosing arbitrary values for  in these equations will produce the
coordinates of other points on the line. For example, letting  = 1 yields the
point (2 4 7). This is the terminal point of the vector 1[4 −3 6] having initial
point (−2 7 1). Choosing  = −2 produces the point (−10 13 −11). This is the
terminal point of the vector −2[4 −3 6] having initial point (−2 7 1). ¥
In the next example, we illustrate how to get the equation for a line when
two points on the line are given. This example also shows that the parametric
representation of a line is not unique.


Example 3 We will calculate parametric equations for the line in R3 passing through (7 1 1)
and (−3 0 5). In this case, we are not explicitly given the direction of the line.
To find a vector in this direction, we take one of the points, say, (−3 0 5), as the

Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
c Elsevier 2016 — All Rights Reserved.
°

, 3

initial point, and the other, (7 1 1) as the terminal point. This yields the direction
vector [7 − (−3) 1 − 0 1 − 5] = [10 1 −4]. Then, using this vector together with
the point (7 1 1), we find that the parametric equations for the line are

 = 7 + 10  = 1 +   = 1 − 4

where  ∈ R. Alternatively, notice that we could have used (7 1 1) as the initial
point and (−3 0 5) as the terminal point in calculating the parametric equations.
This choice gives us the direction vector [−10 −1 4] (why?), and we would then
obtain the alternate parametric equations

 = −3 − 10  = −  = 5 + 4

where  ∈ R. We used a different variable for the parameter in these last three
equations to emphasize the fact that equal values of  and  do not correspond to
the same point on the line. For example,  = 0 corresponds to the initial point
(7 1 1), while  = 0 produces (−3 0 5). In order to produce (−3 0 5) from the
first set of parametric equations, we must use  = −1. ¥
In the last example, notice that we also could have used any nonzero scalar
multiple of [10 1 −4] as the direction vector. In particular, if we choose a unit
vector in the direction of [10 1 −4] as the direction vector, the absolute value of
the parameter  would represent the distance traveled along the line from the initial
point.
In the next example, we consider two intersecting lines, and show how to find the
point of intersection and the angle formed between the lines. Notice that whenever
a pair of distinct lines intersects, there are at most two distinct angles formed, and
these two angles are supplements of each other; that is, their angle measures sum
to 180◦ . We define the angle between two intersecting lines as the minimum
of these two angles (i.e., the angle that is ≤ 2 radians = 90◦ ). We can find this
angle by taking a vector in the direction of each line, calculating the angle between
these vectors, and then taking the supplementary angle if necessary.


Example 4 Let 1 and 2 be the lines with parametric equations

1 :  = 8 − 5  = −3 + 2  = −7 + 7 where  ∈ R
and 2 :  = 6 + 3  = −2 −   = 2 + 2 where  ∈ R

First, let us determine if these lines intersect, and, if so, where. In order for 1
and 2 to intersect, we must find values for  and  such that all of the following
equations are simultaneously satisfied:

⎨ 8 − 5 = 6 + 3
−3 + 2 = −2 −  

−7 + 7 = 2 + 2

Solving for  in the first of these yields  = − 53  + 25 . Substituting this into the
second equation produces −3+2(− 35 + 25 ) = −2− which gives  = −1. Therefore,
 = 1 (why?). We check that these values of  and  satisfy the third equation as
well (they yield 0 = 0), and therefore, the lines do intersect, and this occurs when
 = −1 and  = 1. This intersection is at the point (  ) = (3 −1 0) in R3
(why?).
Next, we determine the angle between these lines. To do this, we find a direction
vector for each line, and then use the dot product to calculate the cosine of the
angle  between them. A vector in the direction of 1 is [−5 2 7] (because −5, 2,
7 are the coefficients of the parameters in the parametric equations for 1 ) and a
vector in the direction of 2 is [3 −1 2] (because 3, −1, 2 are the coefficients of the


Andrilli/Hecker–Elementary Linear Algebra, 5th ed.
Copyright °c 2016 Elsevier, Ltd. All Rights Reserved.
$17.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
LectWarren Harvard University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
470
Miembro desde
2 año
Número de seguidores
164
Documentos
1063
Última venta
20 horas hace

3.9

54 reseñas

5
31
4
7
3
5
2
1
1
10

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes