b b b
SOLUTIONS
, CONTENTS
Preface b …………………………………………...……………………………………….. b 1
b Chapter 2 Mathematical Concepts in Kinematics ………………………………………..
b b b b b b b 2
b Chapter 3 Fundamental Concepts in Kinematics
b b b b b b ……………………………………….. b 8
b Chapter 4 Kinematic Analysis of Planar Mechanisms ...................................................................19
b b b b b b
Chapter 5 Dimensional Synthesis ..................................................................................................81
b b b
Chapter 6 Static Force Analysis of Planar Mechanisms................................................................159
b b b b b b b
Chapter 7 Dynamic Force Analysis of Planar Mechanisms ..........................................................210
b b b b b b b
Chapter 8 Design & Kinematic Analysis of Gears ........................................................................288
b b b b b b b
Chapter 9 Design & Kinematic Analysis of Disk Cams ................................................................327
b b b b b b b b
Chapter 10 Kinematic Analysis of Spatial Mechanisms .................................................................364
b b b b b b
Chapter 11 Introduction to Robotic Manipulators ..........................................................................409
b b b b b
@
@SSeeisismmicicisisoolalatitoionn
, CHAPTER2 b
Problem 2.1 Statement:
b b
Formulate an equation for the vector loop illustrated in Figure P.2.1. Consider that vector Vj
b b b b b b b b b b b b b b b
always lies along the real axis.
b b b b b
Figure P.2.1 Vector loop (3 vectors where Vj
b b b b b b b b changes length) in 2-D complex space b b b b b
Problem 2.1 Solution:
b b
Taking the clockwise sum of the vector loop in Figure P.2.1 produces the equation
b b b b b b b b b b b b b
V1ei1 +V2 ei2 −Vj = 0.
b
b
b
b
b b b b
When expanded and separated into real and imaginary terms, the vector loop equation becomes
b b b b b b b b b b b b b
V1 cos1 +V2 cos2 −Vj = 0 b b
.
b b b b b
V1 sin1 +V2 sin2 = 0
b
b
b b
b
b
b
Problem 2.2 Statement:
b b
Formulate an equation for the vector loop illustrated in Figure P.2.2. Consider that vector Vj
b b b b b b b b b b b b b b b
always lies along the real axis and vector V3
b b b b b b b b is always perpendicular to the real axis.
b b b b b b
@Seismi2cisolation
@Seismicisolation
, Figure P.2.2 Vector loop (4 vectors where Vj
b b b b b b b b changes length) in 2-D complex space b b b b b
Problem 2.2 Solution:
b b
Taking the clockwise sum of the vector loop in Figure P.2.2 produces the equation
b b b b b b b b b b b b b
V1ei1 +V2 ei2 −V3 −Vj = 0.
b
b
b
b
b b b b b b
When expanded and separated into real and imaginary terms, the vector loop equation becomes
b b b b b b b b b b b b b
V1 cos1 +V2 cos2 −Vj = 0 b b
.
b b b b b
V1 sin1 +V2 sin2 −V3 = 0
b
b
b b
b
b
b
b
b
Problem 2.3 Statement:
b b
Calculate the first derivative of the vector loop equation solution from Problem 2.2. Consider
b b b b b b b b b b b b b
only angles 1 , 2 and vector Vj from Problem 2 to be time-dependent.
b b
b
b b b b b b b b b
Problem 2.3 Solution:
b b
Differentiating the vector loop equation solution from Problem 2.2 produces the equation
b b b b b b b b b b b
i1Vei1 +i V2 ei2 −V j = 0.
b b
b
b b b
b
b b b
1 2
When expanded and separated into real and imaginary terms, the vector loop equation becomes
b b b b b b b b b b b b b
−1V 1sin 1− V2 sin
b
2 2−V j= 0
b b b b b b b b b b b
.
b
1V cos 1 + V
b
2 cos 2 = 0
b b b b b b
1 2
@Seismi3cisolation
@Seismicisolation