100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

A First Course in Integral Equations: Fully Worked Solutions (2nd Edition, 2025/26)

Puntuación
-
Vendido
-
Páginas
231
Grado
A+
Subido en
29-10-2025
Escrito en
2025/2026

This Solutions Manual offers step-by-step, fully worked solutions to all exercises in A First Course in Integral Equations (2nd Edition) by Abdul-Majid Wazwaz. It integrates both classical and newly developed methods, making it ideal for advanced undergraduates and graduate students in mathematics, physics, engineering, and applied sciences. Whether you're preparing for examinations, verifying your own work, or deepening conceptual understanding, this manual provides clear reasoning, consistent notation, and pedagogical guidance to help you master integral equations with confidence.

Mostrar más Leer menos
Institución
MATH XX1
Grado
MATH XX1











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
MATH XX1
Grado
MATH XX1

Información del documento

Subido en
29 de octubre de 2025
Número de páginas
231
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Covers All 8 Chapters




SOLUTIONS MANUAL

,Contents

Preface ix

1 Introductory Concepts 1
1.2 Classification of Linear Integral Equations .......................... 1
1.3 Solution of an Integral Equation ............................................ 2
1.4 Converting Volterra Equation to an ODE ............................. 4
1.5 Converting IVP to Volterra Equation .................................... 7
1.6 Converting BVP to Fredholm Equation ............................. 11
1.7 Taylor Series ......................................................................... 13

2 Fredholm Integral Equations 15
2.2 Adomian Decomposition Method .......................................... 15
2.3 The Variational Iteration Method ........................................ 22
2.4 The Direct Computation Method ........................................ 25
2.5 Successive Approximations Method ..................................... 29
2.6 Successive Substitutions Method ......................................... 33
2.8 Homogeneous Fredholm Equation ........................................ 35
2.9 Fredholm Integral Equation of the First Kind ..................... 39

3 Volterra Integral Equations 41
3.2 Adomian Decomposition Method .......................................... 41
3.3 The Variational Iteration Method ........................................ 54
3.4 The Series Solution Method ................................................. 57
3.5 Converting Volterra Equation to IVP .................................. 63
3.6 Successive Approximations Method ..................................... 67
3.7 Successive Substitutions Method ......................................... 75
3.9 Volterra Equations of the First Kind ................................... 79

vii
viii Contents

,4 Fredholm Integro-Differential Equations 85
4.3 The Direct Computation Method ......................................... 85
4.4 The Adomian Decomposition Method .................................. 90
4.5 The Variational Iteration Method ......................................... 94
4.6 Converting to Fredholm Integral Equations......................... 96

5 Volterra Integro-Differential Equations 101
5.3 The Series Solution Method ............................................... 101
5.4 The Adomian Decomposition Method ................................ 103
5.5 The Variational Iteration Method ....................................... 105
5.6 Converting to Volterra Equations ....................................... 107
5.7 Converting to Initial Value Problems ................................ 110
5.8 The Volterra Integro-Differential Equations of the First
Kind ...................................................................................... 113

6 Singular Integral Equations 117
6.2 Abel’s Problem .................................................................... 117
6.3 Generalized Abel’s Problem ............................................... 122
6.4 The Weakly Singular Volterra Equations.......................... 122
6.5 The Weakly Singular Fredholm Equations ....................... 130

7 Nonlinear Fredholm Integral Equations 133
7.2 Nonlinear Fredholm Integral Equations .............................. 133
7.2.1 The Direct Computation Method ............................ 133
7.2.2 The Adomian Decomposition Method ..................... 141
7.2.3 The Variational Iteration Method ............................ 148
7.3 Nonlinear Fredholm Integral Equations of the First
Kind ...................................................................................... 149
7.4 Weakly-Singular Nonlinear Fredholm Integral Equations . 153

8 Nonlinear Volterra Integral Equations 157
8.2 Nonlinear Volterra Integral Equations................................. 157
8.2.1 The Series Solution Method .................................... 157
8.2.2 The Adomian Decomposition Method ..................... 163
8.2.3 The Variational Iteration Method ............................ 168
8.3 Nonlinear Volterra Integral Equations of the First Kind ... 170
8.3.1 The Series Solution Method .................................... 170
8.3.2 Conversion to a Volterra Equation of the Second
Kind ........................................................................... 172
8.4 Nonlinear Weakly-Singular Volterra Equation ................... 173

, Chapter 1

Introductory Concepts

1.2 Classification of Linear Integral Equations
Exercises 1.2

1. Fredholm, linear, nonhomogeneous
2. Volterra, linear, nonhomogeneous
3. Volterra, nonlinear, nonhomogeneous
4. Fredholm, linear, homogeneous
5. Fredholm, linear, nonhomogeneous
6. Fredholm, nonlinear, nonhomogeneous
7. Fredholm, nonlinear, nonhomogeneous
8. Fredholm, linear, nonhomogeneous
9. Volterra, nonlinear, nonhomogeneous
10. Volterra, linear, nonhomogeneous
11. Volterra integro-differential equation, nonlinear
12. Fredholm integro-differential equation, linear
13. Volterra integro-differential equation, nonlinear
14. Fredholm integro-differential equation, linear
15. Volterra integro-differential equation, linear
∫x
16. u(x) = 1 4u(t)dt
+ 0
∫x
3t2u(t)dt
17. u(x) = 1 0
∫x
+
u2(t)dt
0
18. u(x) = 4
+
$18.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
lechaven Chamberlain School Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
29
Miembro desde
1 año
Número de seguidores
0
Documentos
919
Última venta
1 mes hace
A+ Exam Prep Notes

I offer meticulously crafted study notes and summaries for a range of university subjects, including [Subject 1], [Subject 2], and [Subject 3]. My goal is to simplify complex concepts and provide clear, concise materials that help you achieve your academic goals. All notes are based on [Specific University/Course] curricula and are regularly updated."

4.0

4 reseñas

5
2
4
1
3
0
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes