QUESTIONS AND CORRECT DETAILED ANSWERS
(VERIFIED ANSWERS) |ALREADY GRADED
A+||BRAND NEW VERSION!!
Multi-layer Perceptron (MLP) pain points for NLP - CORRECT ANSWER- - Cannot easily support
variable-sized sequences as inputs or outputs
- No inherent temporal structure
- No practical way of holding state
- The size of the network grows with the maximum allowed size of the input or output
sequences
Truncated Backpropagation through time - CORRECT ANSWER- - Only backpropagate a RNN
through T time steps
Recurrent Neural Networks (RNN) - CORRECT ANSWER- h(t) = activation(U*input + V*h(t-1) +
bias)
y(t) = activation(W*h(t) + bias)
- activation is typically the logistic function or tanh
- outputs can also simply be h(t)
- family of NN architectures for modeling sequences
, Training Vanilla RNN's difficulties - CORRECT ANSWER- - Vanishing gradients
- Since dx(t)/dx(t-1) = w^t
- if w > 1: exploding gradients
- if w < 1: vanishing gradients
Long Short-Term Memory Network Gates and States - CORRECT ANSWER- - f(t) = forget gate
- i(t) = input gate
- u(t) = candidate update gate
- o(t) = output gate
- c(t) = cell state
- c(t) = f(t) * c(t - 1) + i(t) * u(t)
- h(t) = hidden state
- h(t) = o(t) * tanh(c(t))
Embedding - CORRECT ANSWER- A learned map from entities to vectors that encodes similarity
Graph Embedding - CORRECT ANSWER- Optimize the objective that connected nodes have more
similar embeddings than unconnected nodes.
Task: convert nodes to vectors
- effectively unsupervised learning where nearest neighbors are similar