v v
SOLUTIONS
,TableofContents
v v
1. Single-Degree-of-Freedom Systems v
2. Random Vibrations v
3. Dynamic Response of SDOF Systems Using Numerical Methods
v v v v v v v
4. Systems with Several Degrees of Freedom
v v v v v
5. Equations of Motion of Continuous Systems
v v v v v
6. Vibration of Strings and Barsv v v v
7. Beam Vibrations
v
8. Continuous Beams and Frames v v v
9. Vibrations of Plates v v
10. Vibration of Shells v v
11. Finite Elements and Time Integration Numerical Techniques
v v v v v v
12. Shock Spectra v
, Chapter 1 v
1.1 Write the equations of motion for the one-degree-of-freedom systems shown in Figures1.72 (a) … (i). Assume
v v v v v v v v v v v v v v v
that the loading is in the form of a force P(t), a given displacement a(t), or a given rotation
v v v v v v v v v v v v v v v v v v v (t) as indicated in the
v v v v v v
v figure.
Figure 1.72 One-degree-of-freedom systems
v v v
@@SSee
isis
mmiciicsis
oolala
titoionn
, Solutions
(a) (b)
spring force = (3EI / L )u 3
( )
v v v v v v
spring force = 48EI / L3 u
v v v v v v
3EI
mu + v
u = P(t)
v v
48EI L3
mu + 3 u = P(t)
v v v v
L v
(c) (d)
spring force = 3EI / L3 u − 3EI / L2 (t)
v v v ( v v v ) ( v v v v )
v
spring force = 3EI / L3
v v v ( v v )(u −a)
v v v mu +v
3EI
v
v
u=
v v
3EI
(t)
v
L3 L2
3EI
mu +
L3
v (u − a) = 0
v
v v v v v
3EI 3EI
mu + u= a(t)
v v
v v v v
L3
L3
(e) (f)
spring force = (EA/ L)u
( ) ( )
v v v v v
EA spring force = 2 3EI / L3 u = 6EI / L3 u
v v v v v v v v v v v
mu + u = P(t)
v v
v v v v
6EI
L mu +v
u = P(t)
v v v
L3
@@SSee
isis
mmiciicsis
oolala
titoionn