100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

****INSTANT DOWNLOAD****PDF***Solutions Manual for Theory and Analysis of Elastic Plates and Shells 2nd Edition

Puntuación
-
Vendido
-
Páginas
182
Grado
A+
Subido en
28-10-2025
Escrito en
2025/2026

****INSTANT DOWNLOAD****PDF***Solutions Manual for Theory and Analysis of Elastic Plates and Shells 2nd EditionThis solutions manual offers comprehensive, step-by-step solutions to the exercises and problems found in the second edition of Theory and Analysis of Elastic Plates and Shells. It supports learning in: Classical plate theory Shear deformation theories Bending, buckling, and vibration analysis Analytical and numerical methods for plate and shell structures It’s designed to accompany the textbook used in advanced engineering courses, especially in mechanical, aerospace, and civil engineering disciplinesThis solutions manual offers comprehensive, step-by-step solutions to the exercises and problems found in the second edition of Theory and Analysis of Elastic Plates and Shells. It supports learning in: Classical plate theory Shear deformation theories Bending, buckling, and vibration analysis Analytical and numerical methods for plate and shell structures It’s designed to accompany the textbook used in advanced engineering courses, especially in mechanical, aerospace, and civil engineering disciplines

Mostrar más Leer menos
Institución
Manual For Theory And Analysis
Grado
Manual for Theory and Analysis











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Manual for Theory and Analysis
Grado
Manual for Theory and Analysis

Información del documento

Subido en
28 de octubre de 2025
Número de páginas
182
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

All12 Chapters Covered
b b b




SOLUTIONS

, Contents


Preface ............................................................................................................................. iv


1. Vectors, Tensors, and Equations of Elasticity............................................... 1
b b b b b




2. Energy Principles and Variational Methods ............................................. 19
b b b b




3. Classical Theory of Plates ................................................................................51
b b b




4. Analysis of Plate Strips ................................................................................... 59
b b b




5. Analysis of Circular Plates ............................................................................. 75
b b b




6. Bending of Simply Supported Rectangular Plates ................................ 91
b b b b b




7. Bending of Rectangular Plates with Various
b b b b b




Boundary Conditions ......................................................................................... 99
b




8. General Buckling of Rectangular Plates ................................................... 115
b b b b




9. Dynamic Analysis of Rectangular Plates ................................................ 123
b b b b




10. Shear Deformation Plate Theories ............................................................ 129
b b b




11. Theory and Analysis of Shells ..................................................................... 139
b b b b




12. Finite Element Analysis of Plates .............................................................. 157
b b b b




@
@SSeeisismmicicisisoolalatitoionn

, 1
Vectors, Tensors, and b b




b Equations of Elasticity b b




1.1 Prove the following properties of δij and εijk (assume i,j = 1,2,3 when they are
b b b b b b b b b b b b b b b b b




dummy indices):
b b




(a) Fijδjk = Fik b b




(b) δijδij = δii = 3 b b b b b




(c) εijkεijk = 6 b b b




(d) εijkFij = 0 whenever Fij = Fji (symmetric) b b b b b b b




Solution:
1.1(a) Expanding the expression
b b b




Fijδjk =Fi1δ1k + Fi2δ2k +Fi3δ3k
b b
b
b
b
b
b




Of the three terms on the right hand side, only one is nonzero. It is equal to Fi1 if
b b b b b b b b b b b b b b b b b b




k = 1, Fi2 if k = 2, or Fi3 if k = 3. Thus, it is simply equal to Fik.
b b b b b b b b b b b b b b b b b b b b




1.1(b) By actual expansion, we have
b b b b b




δijδij = δi1δi1 + δi2δi2 + δi3δi3
b b
b
b
b
b
b




= (δ11δ11 + 0 + 0) + (0 + δ22δ22 + 0) + (0 + 0 + δ33δ33)
b b b b b b b b b b b b b b b




=3 b b




and
δii = δ11 + δ22 + δ33 = 1+ 1+ 1 = 3
b b b b b b b b b b b b b b b




Alternatively, using Fij = δij in Problem 1.1a, we have δijδjk = δik, where i and k are
b b b b b b b b b b b b b b b b b




free indices that can any value. In particular, for i = k, we have the required result.
b b b b b b b b b b b b b b b b b




1.1(c) Using the ε-δ identity and the result of Problem 1.1(b), we obtain
b b b b b b b b b b b b




εijkεijk = δiiδjj − δijδij = 9 − 3 = 6 b
b b b b b b b b b b b




@
@SSeeisismmicicisisoolalatitoionn

, 2 Theory and Analysis of Elastic Plates and Shells b b b b b b b




1.1(d) We have b b




Fijεijk = −Fijεjik (interchanged i and j)
b b b b b b




=−Fjiεijk (renamed i as j and j as i) b b b b b b b b b




Since Fji = Fij, we have
b b b b b




0 = (Fij + Fji)εijk
b b b b b




= 2Fijεijk b
b




The converse also holds, i.e., if Fijεijk = 0, then Fij = Fji. We have 0 =
b b b b b b b b b b b b b b b
b




Fijεijk b
b



1
= (Fijεijk +Fijεijk)
2
b b
b b b

b



1
= (Fijεijk − Fijεjik) (interchanged i and j)
2
b b b b b b b b




1
b




= (Fijεijk − Fjiεijk) (renamed i as j and j as i)
2
b b b b b b b b b b b




1
b




= (Fij − Fji)εijk
2
b b b b


b




from which it follows that Fji = Fij.
b b b b b b b




♠ New Problem 1.1: Show that
b b b b b




∂r xi
= b



∂xi r
Solution: Write the position vector in cartesian component form using the index
b b b b b b b b b b b




notation
b




r = x j ê j (1) b b




Then the square of the magnitude of the position vector is
b b b b b b b b b b




r2 = r ·r = (x i ê i ) ·(xj ê j ) = xixjδij
b b b b b b b b b b




= xixi = xkxk
b b b (2)
Its derivative of r with respect to xi can be obtained from
b b b b b b b b b b b




∂r2 = ∂
(xkxk)
∂xi ∂x
∂xik ∂xk
= x +x b
b

b b b b




∂xi k k ∂x
i b b b




∂xk
=2 xk = 2δikxk = 2xi b b
b b b b


∂xi
Hence
∂r xi
= b (3)
∂xi r



@
@SSeeisismmicicisisoolalatitoionn
$21.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Smartscroll

Conoce al vendedor

Seller avatar
Smartscroll Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
5
Miembro desde
5 meses
Número de seguidores
1
Documentos
2678
Última venta
1 mes hace
NURSING

Welcome to your shortcut to academic and certification success. I'm SMARTSCROLL, a trusted top seller I specialize in high-quality study guides, test banks, certification prep, and real-world exam material all tailored to help you pass fast and score high. Popular categories includes; ✅Test banks and solution manual ✅Biology and Nursing ✅Business, Economics and Accounting ✅ATI and Hesi

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes