100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Quantum Field Theory for the Gifted Amateur (2016) – Solutions Manual – Lancaster

Puntuación
-
Vendido
-
Páginas
71
Grado
A+
Subido en
28-10-2025
Escrito en
2025/2026

INSTANT PDF DOWNLOAD — Complete Solutions Manual for Quantum Field Theory for the Gifted Amateur (2016) by Lancaster. Covers all 15 chapters with step-by-step derivations: Lorentz invariance, scalar & Dirac fields, canonical quantization, path integrals, Feynman diagrams & propagators, gauge fields and QED, scattering amplitudes & cross sections, Wick’s theorem, regularization/renormalization & running couplings, beta functions, symmetries & Noether’s theorem, and spontaneous symmetry breaking. Ideal for graduate QFT problem practice with clearly annotated calculations and exam-ready methods. quantum field theory solutions, QFT solutions manual, Lancaster Blundell solutions, Feynman diagrams practice, propagator calculations, renormalization problems, path integral exercises, canonical quantization, gauge theory problems, QED homework solutions, scalar field theory, Dirac equation spinor, scattering cross section, beta function RG, Wick theorem contractions, perturbation theory QFT, Noether theorem symmetry, spontaneous symmetry breaking, graduate physics exam prep, Oxford textbook

Mostrar más Leer menos
Institución
Quantitative Methods
Grado
Quantitative Methods











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Quantitative Methods
Grado
Quantitative Methods

Información del documento

Subido en
28 de octubre de 2025
Número de páginas
71
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ALL 10 CHAPTERS COVERED




SOLUTIONS MANUAL

,1 Solutions to Odd Numbered
Problems
Random Processes for Engineers


1.1 Simple events (a) Ω = {0, 1}8 , or Ω = {x1 x2 x3 x4 x5 x6 x7 x8 : xi ∈ {0, 1}
for each i}. It is natural to let F be the set of all subsets of Ω. Finally, let
|A|
P (A) = 256 , where |A| denotes the cardinality of a set |A|.
2 1
(b) E1 = {01010101, 10101010} and P (E1 ) = 256 = 128 .
E2 = {00110011, 01100110, 11001100, 10011001} and  P (E 2 ) = 4/256 = 1/64.
8
E3 = {x ∈ Ω : x1 + · · · + x8 = 4} and P (E2 ) = 4 /256 = 70/256 = 35/128.
E4 = {11111111, 11111110, 11111101, 10111111, 01111111, 00111111, 01111110,
11111100} and P (E4 ) = 8/256 = 1/32.
(c) E1 ⊂ E3 , so P (E1 |E3 ) = |E1 |/|E3 | = 2/70 = 1/35.
E2 ⊂ E3 , so P (E2 |E3 ) = |E2 |/|E3 | = 4/70 = 2/35.
1.3 Ordering of three random variables P {X < u < Y } = P {X < u}P {u <
Y } = (1 − e−λu )e−λu = e−λu − e−2λu . Averaging over the choices of u using the
pdf of U yields,

Z 1
0.5 − e−λ + 0.5e−2λ
P {X < U < Y } = e−λu − e−2λu du = .
0 λ



1.5 Congestion at output ports (a) One possibility is Ω = {1, 2, . . . , 8}4 =
{(d1 , d2 , d3 , d4 ) : 1 ≤ di ≤ 8 for 1 ≤ i ≤ 4}, where the packets are assumed to be
numbered one through four, and di is the output port of packet i. Let F be all
the subsets of Ω, and for any event A, let P (A) = |A| 84 .
(b)
 
1 4
P {X1 = k1 , . . . , X8 = k8 } =
84 k 1 k 2 · · · k 8


where k1 k24···k8 = k1 !k24!!···k8 ! is the multinomial coefficient.
P4
(c) One way to do this problem is to note that Xj = i=1 Xij , where Xij = 1 if
packet i is routed to output port j, and Xij = 0 otherwise. Suppose j 6= j ′ . Then
2 1
Xij Xij ′ ≡ 0, and so also, E[Xij Xij ′ ] = 0. Thus, Cov(Xij , Xij ′ ) = 0 − 81 = − 64 .

,2 Solutions to Odd Numbered Problems Random Processes for Engineers



Also, Cov(Xij , Xi′ j ′ ) = 0 if i 6= i′ . Thus,
4
X 4
X
Cov(Xj , X ) = Cov(
j′ Xij , X i′ j ′ )
i=1 i′ =1
4 X
X 4
= Cov(Xij , Xi′ j ′ )
i=1 i′ =1
4
X 1 1
= Cov(Xij , Xij ′ ) = 4(− )=− .
i=1
64 16

(d) Consider the packets one at a time in order. The first packet is routed to
a random output port. The second is routed to a different output port with
probability 78 . Given the first two packets are routed to different output ports, the
third packet is routed to yet another output port with probability 68 . Similarly,
given the first three packets are routed to distinct output ports, the fourth packet
is routed to yet another output port with probability 85 . The answer is thus
8·7·6·5
84 = 105
256 ≈ 0.410.
(e) The event is not true if and only if there are either exactly 3 packets assigned
to one output port or all four packets assigned to one output port. There are
4 · 8 · 7 possibilities for exactly three packets to be assigned to one output port,
since there are four choices for which packet is not with the other three, eight
choices of output port for the group of three, and given that, seven choices of
output port for the fourth packet. There are 8 possibilities for all four packets to
be routed to the same output port. Thus, some output port has three or more
packets assigned to it with probability 4·8·7+884 = 4·7+1
83
29
= 512 ≈ 0.0566. Thus,
29
P {Xi ≤ 2 for all i} = 1 − 512 ≈ 0.9434.
1.7 Conditional probability of failed device given failed attempts (a) P (first
attempt fails)=0.2+(0.8)(0.1)=0.28
(b) P (server is working | first attempt fails ) =
P (server working, first attempt fails)/P (first attempt fails) =(0.8)(0.1)/0.28≈
0.286
(c) P (second attempt fails | first attempt fails ) =P (first two attempts fail)/P (first
attempt fails) = [0.2 + (0.8)(0.1)2 ]/0.28 ≈0.783
(d) P (server is working | first and second attempts fail ) =P (server is work-
ing and first two attempts fail)/P (first two attempts fail) = (0.8)(0.1)2 /[0.2 +
(0.8)(0.1)2 ] ≈0.0385
1.9 Conditional lifetimes; memoryless property of the geometric distribution
(a) P {X > 3} = 1 − p(3) = 0.8, P (X > 8|X > 5) = P ({X>8}∩{X>5}) P {X>5} =
P {X>8} 0
P {X>5} = 0.40 = 0.
(So a five year old working battery is not equivalent to a new one!)
(b) P {Y > 3} = P (miss first three shots) = (1 − p)3 . On the other hand,

P ({Y > 8} ∩ {Y > 5}) P {Y > 8} (1 − p)8
P (Y > 8|Y > 5) = = = = (1 − p)3 .
P {Y > 5} P {Y > 5} (1 − p)5

, Solutions to Odd Numbered ProblemsRandom Processes for Engineers 3




(A player that has missed five shots is equivalent to a player just starting to take
shots.)
(c) Y has a geometric distribution. (Part (b) illustrates the fact that the geomet-
ric distribution is the memoryless lifetime distribution on the positive integers.
The exponential distribution is the continuous type distribution with the same
property.)
1.11 Distribution of the flow capacity of a network One way to solve this prob-
lem is to compute X for each of the 32 outcomes for the links. Another is to use
divide and conquer by conditioning on the state of a key link, such as link 4.

P {X = 0} = P (((F1 F3 ) ∪ (F2 F5 ))F4c ) + P ((F1 ∪ F2 )(F3 ∪ F5 )F4 )
= ((0.2)2 + (0.2)2 − (0.2)4 )(0.8) + (0.2 + 0.2 − (0.2)2 )2 (0.2) = 0.08864.

P {X = 10} = P (F1c F3c (F2 F5 )c F4c ) + P (F1c F2c F3c F5c F4 )
= (0.8)3 (1 − (0.2)2 ) + (0.8)4 (0.2) = 0.57344.

P {X = 5} = 1 − P {X = 0} − P {X = 10} = 0.33792.
1.13 A CDF of mixed type (a) FX (0.8) = 0.5.
(b) There is a half unit of probability mass
R 2 at zero and a density of value 0.5
between 1 and 2. Thus, E[X] = 0 × 0.5 + 1 x(0.5)dx = 3/4 and,
R2
(c) E[X 2 ] = 02 × 0.5 + 1 x2 (0.5)dx = 7/6. So Var(X) = 7/6 − (3/4)2 = 29/48
.
1.15 Poisson and geometric random variables with conditioning
P ∞ P∞ −µ i P∞ −µ i
(a) P {Y < Z} = i=0 j=i+1 e i! µ p(1 − p)j−1 = i=0 e [µ(1−p)] i! = e−µp
Pi−1 e−µ µj
(b) P (Y < Z|Z = i) = P (Y < i|Z = i) = P {Y < i} = j=0 j!
 −µ i 
(c) P (Y = i|Y < Z) = P {Y = i < Z}/P {Y < Z} = e i! µ (1 − p)i /e−µp =
e−µ(1−p) [µ(1−p)]i
i! ,
which is the Poisson distribution with mean µ(1 − p)
(d) µ(1 − p)
1.17 Transformation of a random variable (a) Observe that Y takes values in
the interval [1, +∞).

P {X ≤ ln c} = 1 − exp(−λ ln c) = 1 − c−λ c ≥ 1
FY (c) = P {exp(X) ≤ c} =
0 c<1
Differentiate to obtain

λc−(1+λ) c≥1
fY (c) =
0 c<1
(b) Observe that Z takes values in the interval [0, 3].

 0 c<0
FZ (c) = P {min{X, 3} ≤ c} = P {X ≤ c} = 1 − exp(−λc) 0≤c<3

1 c≥3
The random variable Z is neither discrete nor continuous type. Rather it is a
$18.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TestBanksStuvia Chamberlain College Of Nursng
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2781
Miembro desde
2 año
Número de seguidores
1201
Documentos
1918
Última venta
10 horas hace
TESTBANKS &amp; SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3.9

297 reseñas

5
163
4
44
3
31
2
20
1
39

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes