100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Modern Physics (4th Edition) by Kenneth S. Krane

Puntuación
-
Vendido
-
Páginas
447
Grado
A+
Subido en
21-10-2025
Escrito en
2025/2026

Master key physics concepts with the Solution Manual for Modern Physics (4th Edition) by Kenneth S. Krane. This comprehensive manual provides complete, step-by-step solutions and detailed explanations for all textbook problems, covering relativity, quantum mechanics, atomic structure, nuclear physics, and particle physics. Ideal for physics and engineering students, it offers a clear and structured approach to understanding modern physical principles and solving complex problems effectively.

Mostrar más Leer menos
Institución
Modern Physics
Grado
Modern Physics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Modern Physics
Grado
Modern Physics

Información del documento

Subido en
21 de octubre de 2025
Número de páginas
447
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

All 15 Chapters Covered




SOLUTION MANUAL

, Table of Contents
Chapter 1… ............................................................................. 1

Chapter 2… ........................................................................... 14

Chapter 3… ........................................................................... 47

Chapter 4… ........................................................................... 72

Chapter 5… ........................................................................... 96

Chapter 6… ......................................................................... 128

Chapter 7… ......................................................................... 151

Chapter 8… ......................................................................... 169

Chapter 9… ......................................................................... 183

Chapter 10… ....................................................................... 203

Chapter 11… ....................................................................... 226

Chapter 12… ....................................................................... 249

Chapter 13… ....................................................................... 269

Chapter 14… ....................................................................... 288

Chapter 15… ....................................................................... 305

Sample Formula Sheet for Exams………………………….




viii

, Chapter 1
This chapter presents a review of some topics from classical physics. I have often
heard from instructors using the book that “my students have already studied a year of
introductory classical physics, so they don’t need the review.” This review chapter gives
the opportunity to present a number of concepts that I have found to cause difficulty for
students and to collect those concepts where they are available for easy reference. For
example, all students should know that kinetic energy is 12 mv2 , but few are readily
familiar with kinetic energy as pm , which is used more often in the text. The
expression connecting potential energy difference with potential difference for an electric
charge q, U = qV , zips by in the blink of an eye in the introductory course and is
rarely used there, while it is of fundamental importance to many experimental set-ups in
modern physics and is used implicitly in almost every chapter. Many introductory
courses do not cover thermodynamics or statistical mechanics, so it is useful to “review”
them in this introductory chapter.
I have observed students in my modern course occasionally struggling with
problems involving linear momentum conservation, another of those classical concepts
that resides in the introductory course. Although we physicists regard momentum
conservation as a fundamental law on the same plane as energy conservation, the latter is
frequently invoked throughout the introductory course while former appears and virtually
disappears after a brief analysis of 2-body collisions. Moreover, some introductory texts
present the equations for the final velocities in a one-dimensional elastic collision,
leaving the student with little to do except plus numbers into the equations. That is,
students in the introductory course are rarely called upon to begin momentum
conservation problems with pinitial = pfinal . This puts them at a disadvantage in the
application of momentum conservation to problems in modern physics, where many
different forms of momentum may need to be treated in a single situation (for example,
classical particles, relativistic particles, and photons). Chapter 1 therefore contains a
brief review of momentum conservation, including worked sample problems and end-of-
chapter exercises.
Placing classical statistical mechanics in Chapter 1 (as compared to its location in
Chapter 10 in the 2nd edition) offers a number of advantages. It permits the useful
expression Kav = 32 kT to be used throughout the text without additional explanation. The
failure of classical statistical mechanics to account for the heat capacities of diatomic
gases (hydrogen in particular) lays the groundwork for quantum physics. It is especially
helpful to introduce the Maxwell-Boltzmann distribution function early in the text, thus
permitting applications such as the population of molecular rotational states in Chapter 9
and clarifying references to “population inversion” in the discussion of the laser in
Chapter 8. Distribution functions in general are new topics for most students. They may
look like ordinary mathematical functions, but they are handled and interpreted quite
differently. Absent this introduction to a classical distribution function in Chapter 1, the
students’ first exposure to a distribution function will be ||2, which layers an additional
level of confusion on top of the mathematical complications. It is better to have a chance
to cover some of the mathematical details at an earlier stage with a distribution function
that is easier to interpret.


1

, Suggestions for Additional Reading

Some descriptive, historical, philosophical, and nonmathematical texts which give good
background material and are great fun to read:
A. Baker, Modern Physics and Anti-Physics (Addison-Wesley, 1970).
F. Capra, The Tao of Physics (Shambhala Publications, 1975).
K. Ford, Quantum Physics for Everyone (Harvard University Press, 2005).
G. Gamow, Thirty Years that Shook Physics (Doubleday, 1966).
R. March, Physics for Poets (McGraw-Hill, 1978).
E. Segre, From X-Rays to Quarks: Modern Physicists and their Discoveries (Freeman, 1980).
G. L. Trigg, Landmark Experiments in Twentieth Century Physics (Crane, Russak, 1975).
F. A. Wolf, Taking the Quantum Leap (Harper & Row, 1989).
G. Zukav, The Dancing Wu Li Masters, An Overview of the New Physics (Morrow, 1979).

Gamow, Segre, and Trigg contributed directly to the development of modern physics and
their books are written from a perspective that only those who were part of that
development can offer. The books by Capra, Wolf, and Zukav offer controversial
interpretations of quantum mechanics as connected to eastern mysticism, spiritualism, or
consciousness.


Materials for Active Engagement in the Classroom

A. Reading Quizzes

1. In an ideal gas at temperature T, the average speed of the molecules:
(1) increases as the square of the temperature.
(2) increases linearly with the temperature.
(3) increases as the square root of the temperature.
(4) is independent of the temperature.

2. The heat capacity of molecular hydrogen gas can take values of 3R/2, 5R/2, and 7R/2
at different temperatures. Which value is correct at low temperatures?
(1) 3R/2 (2) 5R/2 (3) 7R/2

Answers 1. 3 2. 1


B. Conceptual and Discussion Questions

1. Equal numbers of molecules of hydrogen gas (molecular mass = 2 u) and helium gas
(molecular mass = 4 u) are in equilibrium in a container.
(a) What is the ratio of the average kinetic energy of a hydrogen molecule to the
average kinetic energy of a helium molecule?
K H / K He = (1) 4 (2) 2 (3) 2 (4) 1 (5) 1/ 2 (6) 1/2 (7) 1/4


2
$21.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ALLStudytestbanks Harvard University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
44
Miembro desde
11 meses
Número de seguidores
4
Documentos
1010
Última venta
2 semanas hace
A+ SOLUTION

ALLStudytestbanks Hub – Verified Solutions, Test Banks & Guides for Medical, Nursing, Business, Engineering, Accounting, Chemistry, Biology & Other Subjects

4.2

13 reseñas

5
9
4
0
3
2
2
2
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes