ks ks ks ks
SOLUTIONS
, SOLUTION MANUAL ks
NUMERICALANDANALYTICALMETHODS WITH
ks ks ks ks
MATLAB
Table of Contents
ks ks
Page
Chapter 2
ks 1
Chapter 3
ks 46
Chapter 4
ks 58
Chapter 5
ks 98
Chapter 6
ks 107
Chapter 7
ks 176
Chapter 8
ks 180
Chapter 9
ks 188
Chapter 10
ks 214
Chapter 11
ks 271
Chapter 12
ks 303
Chapter 13
ks 309
Chapter 14
ks 339
@
@SSeeisismm
ici icsisoolalati toi on n
, CHAPTER 2 ks
P2.1. Taylor series expansion of
ks ks ks ks k s f (x) about x = 0 is:
ks ks k s ks ks ks ks
f 1V 4
f (x) = f (0) + f '(0) x+ f' '(0) x2 + f' ''(0) x3 + x +... ks ks ks ks ks ks ks ks
ks ks ks k s ks ks k s ks ks ks ks k s ks ks ks
2! 3! 4! ks ks
For f ( x) =cos(x) , ks ks ks ks ks ks ks f (0) = 1,
ks ks ks
f ( x) = − sin(x),
ks ks ks ks ks ks k s f '(0) =0,
ks ks ks ks
f ''( x) = −cos(x),
ks ks ks ks ks k s ks k s f ''(0)=−1,
ks ks ks ks ks ks
f '''(x) = +sin(x),
ks ks ks ks ks ks k s ks ks k s f '''(0) =0,
ks ks ks ks ks ks
f1V(x) = + cos(x),
ks ks ks ks ks ks ks k s f1V(0) =1
ks ks ks ks
We can see that ks ks ks
x2 x4 x6 8
cos( x) =1− − +x
k s ks
6! 8! − + − +...
ks ks ks k s k s
4! ks ks ks
+
k s
ks
2!
and that ks
x2
term (k) = −term (k −1)
ks
2k(2 k −1)
ks ks ks ks ks ks ks ks
ks ks ks ks
The following program evaluates cos(x) by both an arithmetic statement and by t he above
ks ks ks k s ks ks ks ks ks ks ks ks ks ks
series for -π ≤ x ≤ π in step of 0.1 .
ks ks ks ks ks ks ks ks ks ks ks ks ks
% cosf.m
ks
% This program evaluates cos(x) by both arithmetic statement and by
ks ks ks ks ks ks ks ks ks ks
% series for
ks ks ks -π ≤ x ≤ π ks ks ks ks k s in steps of 0.1 ks ks ks ks π
clear; clc; ks
xi=-pi;dx=0.1*pi; s
k
ks for j=1:21ks
x(j)=xi+(j-1)*dx;
cos_arith(j)= cos(x(j)); ks
@
@ 1i ci icsiso olalati toionn
SSeeisismm
, sum=1.0;term=1.0; s
k
ks for k=1:50
ks
den=2*k*(2*k-1);
term=-term*x(j)^2/den;
ks sum=sum+term;
ks test=abs(sum*1.0e-6);
ks if abs(term) <= test;
ks ks ks
break;
end
end
ks cos_ser(j)=sum;
ks nterms(j)=k;
end
ks fo=fopen('output.dat','w');
fprintf(fo,'x cos(x) cos (x) ks terms in ks k s \n');
ks fprintf(fo,' by arith stm
ks ks by series
ks the series
ks k s \n');
ks fprintf(fo,'===================================================== \n');
for j=1:21
ks
fprintf(fo,'%10.5f %10.5f %10.5f %3i\n',...
s
k
ks x(j),cos_arith(j),cos_ser(j),nterms(j));
fprintf(fo,' \n');
end
ks fclose(fo);
plot(x,cos_arith),xlabel('x'),ylabel('cos(x)'),
ks title('cos(x) vs. x'),grid; ks ks
@
@ 2i ci icsiso olalati toionn
SSeeisismm