100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Puntuación
-
Vendido
-
Páginas
664
Grado
A+
Subido en
18-10-2025
Escrito en
2025/2026

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Institución
A First Course In Differential Equations With Mode
Grado
A First Course in Differential Equations with mode











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
A First Course in Differential Equations with mode
Grado
A First Course in Differential Equations with mode

Información del documento

Subido en
18 de octubre de 2025
Número de páginas
664
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual
are included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Exercises 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 1 in Review Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)
p
5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y 2 = 1, we see that it is nonlinear
in y because of y 2 . However, writing it in the form (y 2 − 1)(dx/dy) + x = 0, we see that it is
linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is
linear in v . However, writing it in the form (v + uv − ueu )(du/dv) + u = 0, we see that it is
nonlinear in u.
13. From y = e−x/2 we obtain y ′ = − 12 e−x/2 . Then 2y ′ + y = −e−x/2 + e−x/2 = 0.




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6 −20t
14. From y = − e we obtain dy/dt = 24e−20t , so that
5 5
 
dy −20t 6 6 −20t
+ 20y = 24e + 20 − e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain y ′ = 3e3x cos 2x−2e3x sin 2x and y ′′ = 5e3x cos 2x−12e3x sin 2x,
so that y ′′ − 6y ′ + 13y = 0.
16. From y = − cos x ln(sec x + tan x) we obtain y ′ = −1 + sin x ln(sec x + tan x) and
y ′′ = tan x + cos x ln(sec x + tan x). Then y ′′ + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [−2, ∞). From y ′ = 1+2(x+2)−1/2
we have

(y − x)y ′ = (y − x)[1 + (2(x + 2)−1/2 ]

= y − x + 2(y − x)(x + 2)−1/2

= y − x + 2[x + 4(x + 2)1/2 − x](x + 2)−1/2

= y − x + 8(x + 2)1/2 (x + 2)−1/2 = y − x + 8.

An interval of definition for the solution of the differential equation is (−2, ∞) because y ′ is
not defined at x = −2.
18. Since tan x is not defined for x = π/2 + nπ , n an integer, the domain of y = 5 tan 5x is
{x 5x 6= π/2 + nπ}
or {x x 6= π/10 + nπ/5}. From y ′ = 25 sec2 5x we have

y ′ = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (−π/10, π/10). An-
other interval is (π/10, 3π/10), and so on.
19. The domain of the function is {x 4 − x2 6= 0} or {x x 6= −2 or x 6= 2}. From y ′ =
2x/(4 − x2 )2 we have
 2
1

y = 2x = 2xy 2 .
4 − x2
An interval of definition for the solution of the differential equation is (−2, 2). Other inter-
vals are (−∞, −2) and (2, ∞).

20. The function is y = 1/ 1 − sin x , whose domain is obtained from 1 − sin x 6= 0 or sin x 6= 1.
Thus, the domain is {x x =6 π/2 + 2nπ}. From y ′ = − 12 (1 − sin x)−3/2 (− cos x) we have

2y ′ = (1 − sin x)−3/2 cos x = [(1 − sin x)−1/2 ]3 cos x = y 3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.


2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X − 1) − ln(X − 1) = t and differentiating x

implicitly we obtain 4

2 dX 1 dX
− =1 2
2X − 1 dt X − 1 dt
 
2 1 dX t
− =1 –4 –2 2 4
2X − 1 X − 1 dt
–2
2X − 2 − 2X + 1 dX
=1
(2X − 1) (X − 1) dt
–4
dX
= −(2X − 1)(X − 1) = (X − 1)(1 − 2X).
dt

Exponentiating both sides of the implicit solution we obtain

2X − 1
= et
X −1
2X − 1 = Xet − et

(et − 1) = (et − 2)X

et − 1
X= .
et − 2

Solving et − 2 = 0 we get t = ln 2. Thus, the solution is defined on (−∞, ln 2) or on (ln 2, ∞).
The graph of the solution defined on (−∞, ln 2) is dashed, and the graph of the solution
defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

dy dy 4
−2x2 − 4xy + 2y =0
dx dx
2
−x2 dy − 2xy dx + y dy = 0
x
2xy dx + (x2 − y)dy = 0. –4 –2 2 4

–2
Using the quadratic formula to solve y 2 − 2x2 y − 1 = 0
√  √
for y , we get y = 2x2 ± 4x4 + 4 /2 = x2 ± x4 + 1 . –4

Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 − x4 + 1 . Both solutions are defined on (−∞, ∞).
The graph of y1 (x) is solid and the graph of y2 is dashed.




3
$12.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Masterminds001 Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
23
Miembro desde
1 año
Número de seguidores
1
Documentos
729
Última venta
2 días hace

4.0

6 reseñas

5
4
4
0
3
1
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes