100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solution Manual for Heat Convection (2nd Edition) by Latif M. Jiji – Complete Problem Solutions and Explanations

Puntuación
-
Vendido
-
Páginas
882
Grado
A+
Subido en
17-10-2025
Escrito en
2025/2026

Master the principles of convective heat transfer with the Solution Manual for Heat Convection (2nd Edition) by Latif M. Jiji. This detailed manual provides complete, step-by-step solutions and clear explanations for all end-of-chapter problems, covering forced and natural convection, boundary layers, dimensional analysis, heat exchangers, and numerical methods. Ideal for mechanical, chemical, and aerospace engineering students, it offers both theoretical depth and practical insight for mastering heat transfer concepts.

Mostrar más Leer menos
Institución
Heat Convection
Grado
Heat Convection











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Heat Convection
Grado
Heat Convection

Información del documento

Subido en
17 de octubre de 2025
Número de páginas
882
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

All Chapters Covered




SOLUTION MANUAL

, PROBLEM 1.1


Heat is removed from a rectangular surface by L
convection to an ambient fluid at T . The heat transfer
coefficient is h. Surface temperature is given by
A 0 x W
Ts = 1/ 2
x

where A is constant. Determine the steady state heat
transfer rate from the plate.
L
(1) Observations. (i) Heat is removed from the surface
by convection. Therefore, Newton's law of cooling is dqs
applicable. (ii) Ambient temperature and heat transfer 0 x W
coefficient are uniform. (iii) Surface temperature varies
along the rectangle. dx
(2) Problem Definition. Find the total heat transfer rate by convection from the surface of a
plate with a variable surface area and heat transfer coefficient.

(3) Solution Plan. Newton's law of cooling gives the rate of heat transfer by convection.
However, in this problem surface temperature is not uniform. This means that the rate of heat
transfer varies along the surface. Thus, Newton’ s law should be applied to an infinitesimal area
dAs and integrated over the entire surface to obtain the total heat transfer.

(4) Plan Execution.

(i) Assumptions. (1) Steady state, (2) negligible radiation, (3) uniform heat transfer
coefficient and (4) uniform ambient fluid temperature.

(ii) Analysis. Newton's law of cooling states that
qs = h As (Ts - T) (a)
where
As = surface area, m2
h = heat transfer coefficient, W/m2-oC
qs = rate of surface heat transfer by convection, W
Ts = surface temperature, oC
T = ambient temperature, oC
Applying (a) to an infinitesimal area dAs
dq s = h (Ts - T) dAs (b)
The next step is to express Ts (x) in terms of distance x along the triangle. Ts (x) is specified as
A
Ts = 1/ 2 (c)
x

, PROBLEM 1.1 (continued)

The infinitesimal area dAs is given by

dAs = W dx (d)
where
x = axial distance, m
W = width, m
Substituting (c) and into (b)
A
dq s = h( - T) Wdx (e)
1/ 2
x
Integration of (f) gives qs

 dq 
L 1/ 2
q= = hW ( Ax T )dx (f)
s s 
0
Evaluating the integral in (f)


qs hW 2 AL1/ 2 LT 
Rewrite the above
qs hWL2 AL 1/ 2
T   (g)
Note that at x = L surface temperature Ts (L) is given by (c) as

Ts (L) AL 1/ 2 (h)
(h) into (g)
qs hWL 2Ts (L) T  (i)

(iii) Checking. Dimensional check: According to (c) units of C are o C/m1/ 2 . Therefore units
qs in (g) are W.
Limiting checks: If h = 0 then qs = 0. Similarly, if W = 0 or L = 0 then qs = 0. Equation (i)
satisfies these limiting cases.

(5) Comments. Integration is necessary because surface temperature is variable.. The same
procedure can be followed if the ambient temperature or heat transfer coefficient is non-uniform.

, PROBLEM 1.2 (continued)
A right angle triangle is at a uniform surface temperature Ts. Heat is removed by convection to
an ambient fluid at T . The heat transfer coefficient h varies along the surface according to

C
h=
x1/ 2

where C is constant and x is distance along the base measured from the apex. Determine the
total heat transfer rate from the triangle.

(1) Observations. (i) Heat is removed from the surface by convection. Therefore, Newton's
law of cooling may be helpful. (ii) Ambient temperature and surface temperature are uniform.
(iii) Surface area and heat transfer coefficient vary along the triangle.

(2) Problem Definition. Find the total heat transfer rate by convection from the surface of a
plate with a variable surface area and heat transfer coefficient.

(3) Solution Plan. Newton's law of cooling gives the rate of
heat transfer by convection. However, in this problem surface dqs W
area and heat transfer coefficient are not uniform. This means
that the rate of heat transfer varies along the surface. Thus,
Newton’ s law should be applied to an infinitesimal area dAs x
and integrated over the entire surface to obtain the total heat dx
transfer.
L
(4) Plan Execution.

(i) Assumptions. (1) Steady state, (2) negligible radiation and (3) uniform ambient fluid
temperature.

(ii) Analysis. Newton's law of cooling states that
qs = h As (Ts - T) (a)
where
As = surface area, m2
h = heat transfer coefficient, W/m2-oC
qs = rate of surface heat transfer by convection, W
Ts = surface temperature, oC
T = ambient temperature, oC
Applying (a) to an infinitesimal area dAs
dq s = h (Ts - T) dAs (b)
The next step is to express h and dAs in terms of distance x along the triangle. The heat transfer
coefficient h is given by
C
h= (c)
x1/ 2
The infinitesimal area dAs is given by
$20.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ALLStudytestbanks Harvard University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
49
Miembro desde
1 año
Número de seguidores
4
Documentos
1032
Última venta
1 día hace
A+ SOLUTION

ALLStudytestbanks Hub – Verified Solutions, Test Banks & Guides for Medical, Nursing, Business, Engineering, Accounting, Chemistry, Biology & Other Subjects

4.3

14 reseñas

5
10
4
0
3
2
2
2
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes