100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Statistics for Pre-MSc (Book: Statistics for Business & Economics - 5th edition)

Puntuación
-
Vendido
3
Páginas
36
Subido en
16-10-2025
Escrito en
2025/2026

Summary of all topics covered in the course 'Statistics for Pre-Msc', given in all pre-master programmes of the University of Groningen. The summary contains all information required for the exam. That is, notes of all the knowledge clips (1-9) on Brightspace and important information from the corresponding chapters in the book (Statistics for Business & Economics - 5th edition)

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Chapters 1-16
Subido en
16 de octubre de 2025
Número de páginas
36
Escrito en
2025/2026
Tipo
Resumen

Temas

Vista previa del contenido

Knowledge clip 1: Chapter 1 (Data and Statistics)
Statistics (also data science) = the art and science of collecting, analyzing, presenting and interpreting
data (the result from going from your hypothesis, to collecting data, to presenting your results).

Companies have really large datasets, with all kinds of data. Statistics is also about providing
information based on data to support decision-making. Main point:

➔ Example: an analyst of Zalando could run a project. What are the drivers of product returns?
What makes that certain products are returned more often than other products? Are there
certain customers returning more products than other customers? Maybe it’s related to
promotions. If you do a discount, maybe not only sales go up, but also returns go up.

Database/data set = collection of all the data that is relevant for a certain topic (in SPSS/Excel). Most
databases have the same structure, often shown as a data matrix consisting:

• Columns → variables
• Rows → observations, elements, cases, subjects
• Each cell → measurement, data point

There are different types of variables. The classical way to make a distinction is at the level of
measurement. There are four measurement levels:




Toelichting:

• Nominal data → categories (no order or direction).
➔ Someone’s name, the country where someone is from, male or female.
• Ordinal data → categories, but there’s an order/ranking.
➔ Being 1st, 2nd or 3rd in a sports competition, 1 to 5 stars customer satisfaction rating.
• Interval data → the same differences between measurements, but no true zero.
➔ Temperature Celsius: the difference between 10 degrees and 11 degrees is the same as
the difference between 40 and 41 degrees.
• Ratio data → the same difference between scale points, but a true zero exists.
➔ Age of an individual: the difference between 18 and 19 is the same as between 50 and
51, but additionally, the age of 0 has meaning.




1

,The level measurement has major consequences for what you can do statistically/mathematically
with your data/variables. From nominal to ratio: data becomes more powerful, less restrictive.




There are three different types of datasets:

• Cross-sectional data → survey of cases, all measured at one period of time.
➔ Survey conducted among customers
• Time-series data (more common in finance) → variables measured over time.
➔ Various stock prices
• Panel data → combination: multiple cases, same variables measured at multiple time points.
➔ Consumer panel reporting purchase behavior (every year, you send the same survey to
your customers and measure the same things over and over again).
➔ If you do a price discount in a supermarket and you have additional sales, but you don’t
have panel data, you can’t see if it’s more people buying your products or the same
people buying more of your products. You need individual data (who is buying what over
time) to see whether you have the same customers or you attracted new customers.

There are different types of data in terms of data sources:

• Primary data → collecting new data
• Secondary data → using existing data




2

, Statistics is a way to get information from data:




Key statistical concepts:

• Population → the group of all items/cases of interest. One wants to draw a conclusion on
this group.
• Sample → the group of items/cases drawn from the population (sub-group; the group that
you study). One applies statistical analysis on the data from a sample.




3
$6.64
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Thessa03 Saxion Hogeschool
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
79
Miembro desde
3 año
Número de seguidores
35
Documentos
10
Última venta
2 semanas hace

4.6

7 reseñas

5
5
4
1
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes