100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Comprehensive Test Bank – Nuclear Chemistry: Complete Practice Questions, Detailed Solutions, and Verified Answers for Chemistry Exam Preparation (Updated 2025)

Puntuación
-
Vendido
-
Páginas
35
Grado
A+
Subido en
13-10-2025
Escrito en
2025/2026

Comprehensive Test Bank – Nuclear Chemistry: Complete Practice Questions, Detailed Solutions, and Verified Answers for Chemistry Exam Preparation (Updated 2025) Note on significant figures: If the final answer to a solution needs to be rounded off, it is given first with one nonsignificant figure, and the last significant figure is underlined. The final answer is then rounded to the correct number of significant figures. In multistep problems, intermediate answers are given with at least one nonsignificant figure; however, only the final answer has been rounded off. 20.1. The nuclide symbol for potassium-40 is 40 19 K. Similarly, the nuclide symbol for calcium-40 is 40 20 Ca. The equation for beta emission is 40 19 K  40 20 Ca + 0 1 e 20.2. Plutonium-239 has the nuclide symbol is 239 94 Pu. An alpha particle has the symbol 4 2 He. The nuclear equation is 239 94 Pu  A Z X + 4 2 He From the superscripts you can w

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
13 de octubre de 2025
Número de páginas
35
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

CHAPTER 20
Nuclear Chemistry


■ SOLUTIONS TO EXERCISES
Note on significant figures: If the final answer to a solution needs to be rounded off, it is given first with
one nonsignificant figure, and the last significant figure is underlined. The final answer is then rounded to
the correct number of significant figures. In multistep problems, intermediate answers are given with at
least one nonsignificant figure; however, only the final answer has been rounded off.

20.1. The nuclide symbol for potassium-40 is 40
19 K . Similarly, the nuclide symbol for calcium-40 is
20 Ca . The equation for beta emission is
40


40
19 K  40
20 Ca + 0
1 e

20.2. Plutonium-239 has the nuclide symbol is 239
94 Pu . An alpha particle has the symbol 42 He . The
nuclear equation is
239
94 Pu  A
Z X + 42 He

From the superscripts you can write
239 = A + 4, or A = 235
Similarly, from the subscripts you can write
94 = Z + 2, or Z = 92
Hence, A = 235 and Z = 92, so the product is 235
92 X . Because element 92 is uranium, symbol U,
you write the product nucleus as 235
92 U .



20.3. a. 118
50 Sn has atomic number 50. It has 50 protons and 68 neutrons. Because its atomic number
is less than 83 and it has an even number of protons and neutrons, it is expected to be
stable.
b. 76
33 As has atomic number 33. It has 33 protons and 43 neutrons. Because stable odd-odd
nuclei are rare, you would expect 76
33 As to be one of the radioactive isotopes.

c. 227
89 Ac has atomic number 89. Because its atomic number is greater than 83, 227
89 Ac is
radioactive.

20.4. a. 13
7 N has seven protons and six neutrons (fewer neutrons than protons). Its N/Z ratio is
smaller than that in the stable 14N nucleus, so it is expected to decay by electron capture or
positron emission (more likely, because this is a light isotope).
b. 26
11 Na has 11 protons and 15 neutrons. It is expected to decay by beta emission.




© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

, 818 Chapter 20: Nuclear Chemistry


20.5. a. The abbreviated notation is 40
20 Ca (d,p) 41
20 Ca .


b. The nuclear equation is 126 C + 21 H  136 C + 11 H .

20.6. You can write the nuclear equation as follows:
A
Z X + 01 n  14
6 C + 11 H

To balance this equation in charge (subscripts) and mass number (superscripts), write the
equations
A + 1 = 14 + 1 (from superscripts)
Z+0=6+1 (from subscripts)
Hence, A = 14 and Z = 7. Therefore, the nucleus that produces carbon-14 by this reaction is 14
7 N.

20.7. Because an activity of 1.0 Ci is 3.7  1010 nuclei/s, the rate of decay in this sample is
3.7  1010 nuclei/s
Rate = 13 Ci  = 4.81  1011 nuclei/s
1.0 Ci

The number of nuclei in this 2.5-µg (2.5  10−6-g) sample of 99m
43 Tc is

1 mol Tc-99m 6.02  1023 Tc-99m nuclei
2.5  10−6 g Tc-99m  
99 g Tc-99m 1 mol Tc-99m

= 1.52  1016 Tc-99m nuclei
The decay constant is
rate 4.81  1011 nuclei/s
k= = = 3.16  10−5 = 3.2  10−5/s
Nt 1.52  1016 nuclei

20.8. First, substitute the value of k into the equation relating half-life to the decay constant:
0.693 0.693
t½ = = = 1.658  108 s
k 4.18  109 / s
Convert the half-life from seconds to years:
1 min 1h 1d 1y
1.658  108 s     = 5.257 = 5.26 y
60 s 60 min 24 h 365 d

20.9. The conversion of the half-life to seconds gives
365 d 24 h 60 min 60 s
28.1 y     = 8.861  108 s
1y 1d 1h 1 min

Because t1/2 = 0.693/k, solve this for k, and substitute the half-life in seconds.
0.693 0.693
k= = = 7.8208  10−10 /s
t1/2 8.861  108 s




© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

, Chapter 20: Nuclear Chemistry 819

Before substituting into the rate equation, you need to know the number of nuclei in a sample
containing 5.2  10−9 g of strontium-90.
1 mol Sr-90 6.02  1023 Sr-90 nuclei
5.2  10−9 g Sr-90   = 3.478  1013 Sr-90 nuclei
90 g Sr-90 1 mol Sr-90

Now, substitute into the rate equation:
Rate = kNt = (7.8208  10−10/s)  (3.478  1013 nuclei) = 2.72  104 nuclei/s
Calculate the activity by dividing the rate (disintegrations of nuclei per second) by 3.70  1010
disintegrations of nuclei per second per curie.
1.0 Ci
Activity = 2.72  104 nuclei/s  = 7.351  10−7 = 7.4  10−7 Ci
3.7  1010 nuclei/s

20.10. The decay constant, k, is 0.693/t1/2. If you substitute this into the equation
Nt 0.693 t
ln = −kt = −
No t1/2

Substitute the values t = 25.0 y and t1/2 = 10.76 y to get
Nt 0.693  25.0 y
ln = = −1.6101
No 10.76 y

The fraction of krypton-85 remaining after 25.0 y is Nt/No.
Nt
= e−1.6101 = 0.1999 = 0.20
No

20.11. The equation applied in this problem is
Nt
ln = −kt
No

The ratio of rates of disintegration is
No 15.3
= = 3.400
Nt 4.5

Therefore, substituting this value of No/Nt and t1/2 = 5730 y into the previous equation gives
t1/2 N 5730 y
t= ln o = ln (3.400) = 1.01  104 = 1.0  104 y
0.693 N t 0.693

20.12. a. First, determine the nuclear masses.
Nuclear mass of 234
90 Th = 234.03660 amu − (90  0.000549 amu) = 233.987190 amu

Nuclear mass of 234
91 Pa = 234.04330 amu − (91  0.000549 amu) = 233.993341 amu




© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

, 820 Chapter 20: Nuclear Chemistry


Write the appropriate nuclear mass below each nuclide symbol. Then calculate m.
234 234 0
90 Th  Pa + e
91 -1


233.987190 233.993341 0.000549 amu
Hence,
m = (233.993341 + 0.000549 − 233.987190) amu = 0.006700 amu
The mass change for molar amounts in this reaction is 0.006700 g, or 6.700  10−6 kg. The
energy change is
E = (m)c2 = (6.700  10−6 kg)(3.00  108 m/s)2 = 6.030  1011 J/mol
For 1.00 g Th-234, the energy change is
1 mol Th-234 6.030  1011 J
1.00 g Th-234   = 2.576  109 = 2.58  109 J
234 g Th-234 1 mol Th-234

b. Convert the mass change for the reaction from amu to grams.
1g
m = 0.006700 amu  = 1.112  10−26 g = 1.112  10−29 kg
1 amu  6.02  1023
E = (m)c2 = (1.112  10−29 kg)(3.00  108 m/s)2 = 1.001  10−12 J
Convert this to MeV:
1 MeV
E = 1.001  10−12 J  = 6.252 = 6.25 MeV
1.602  1013 J



■ ANSWERS TO CONCEPT CHECKS
20.1. a. Yes. Isotopes have similar chemical properties.
b. No, since the 13 H 2 O molecule is more massive than 11 H 2 O .
c. 3
1 H 2 O should be radioactive.

20.2. For the same radiation dosage (10 rads), the form of radiation with the highest RBE will cause the
greatest biological damage. Therefore, the  particle will cause the most damage since it has the
highest RBE (10).

20.3. After 50,000 years, enough half-lives have passed (about 10) so there would be almost no carbon-
14 present to detect and measure (about 0.1% would be left).




© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
$22.39
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
UPenn

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
UPenn Bloomsburg University Of Pennsylvania
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 meses
Número de seguidores
0
Documentos
249
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes