100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solution Manual for Stochastic Processes With R An Introduction 1st edition by Olga Korosteleva

Puntuación
-
Vendido
-
Páginas
40
Grado
A+
Subido en
13-10-2025
Escrito en
2025/2026

Title: Solutions Manual for Stochastic Processes With R: An Introduction – 1st Edition Author: Olga Korosteleva (unofficially compiled by various contributors) Content: Step-by-step solutions to all 9 chapters of the textbook, including exercises on: Discrete-time Markov chains Continuous-time processes Poisson processes Brownian motion Format: PDF, instructor-level elaborations

Mostrar más Leer menos
Institución
Solution Manual For Stochastic Processes With R An
Grado
Solution Manual for Stochastic Processes With R An











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Solution Manual for Stochastic Processes With R An
Grado
Solution Manual for Stochastic Processes With R An

Información del documento

Subido en
13 de octubre de 2025
Número de páginas
40
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

https://www.stuvia.com/en-us/doc/8364376/solutions-manual-for-stochastic-processes-with-r-an-introduction-1st-
edition-by-korosteleva-2024-all-9-chapters-covered

ALL 9 CHAPTER COVERED




SOLUTIONS MANUAL

, TABLE OF CONTENTS
CHAPTER 1 ……………………………………………………………………………………. 3
CHAPTER 2 ……………………………………………………………………………………. 31
CHAPTER 3 ……………………………………………………………………………………. 41
CHAPTER 4 ……………………………………………………………………………………. 48
CHAPTER 5 ……………………………………………………………………………………. 60
CHAPTER 6 ……………………………………………………………………………………. 67
CHAPTER 7 ……………………………………………………………………………………. 74
CHAPTER 8 ……………………………………………………………………………………. 81
CHAPTER 9 ……………………………………………………………………………………. 87




2

, CHAPTER 1
0.3 0.4 0.3
EXERCISE 1.1. For a Markov chain with a one-step transition probability matrix � 0.2 0.3 0.5 �
0.8 0.1 0.1
we compute:

(a) 𝑃𝑃(𝑋𝑋3 = 2 |𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) = 𝑃𝑃(𝑋𝑋3 = 2 | 𝑋𝑋2 = 3) (by the Markov property)
= 𝑃𝑃32 = 0.1.
(b) 𝑃𝑃(𝑋𝑋4 = 3 |𝑋𝑋0 = 2, 𝑋𝑋3 = 1) = 𝑃𝑃(𝑋𝑋4 = 3 | 𝑋𝑋3 = 1) (by the Markov property)
= 𝑃𝑃13 = 0.3.
(c) 𝑃𝑃(𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3, 𝑋𝑋3 = 1) = 𝑃𝑃(𝑋𝑋3 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) 𝑃𝑃(𝑋𝑋2 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃(𝑋𝑋3 = 1 | 𝑋𝑋2 = 3) 𝑃𝑃(𝑋𝑋2 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by the Markov property)

= 𝑃𝑃31 𝑃𝑃23 𝑃𝑃12 𝑃𝑃(𝑋𝑋0 = 1) = (0.8)(0.5)(0.4)(1) = 0.16.
(d) We first compute the two-step transition probability matrix. We obtain

0.3 0.4 0.3 0.3 0.4 0.3 0.41 0.27 0.32
𝐏𝐏(2) = � 0.2 0.3 0.5 � � 0.2 0.3 0.5 � = � 0.52 0.22 0.26�.
Now we write 0.8 0.1 0.1 0.8 0.1 0.1 0.34 0.36 0.30
𝑃𝑃(𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3, 𝑋𝑋5 = 1) = 𝑃𝑃(𝑋𝑋5 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3) 𝑃𝑃(𝑋𝑋3 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃(𝑋𝑋5 = 1 | 𝑋𝑋3 = 3) 𝑃𝑃(𝑋𝑋3 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by the Markov property)
(2) (2) 𝑃𝑃(𝑋𝑋 = 1) = (0.34)(0.26)(0.4)(1) = 0.03536.
𝑃𝑃

= 𝑃𝑃31 𝑃𝑃23 12 0

EXERCISE 1.2. (a) We plot a diagram of the Markov chain.

#specifying transition probability matrix
tm<- matrix(c(1, 0, 0, 0, 0, 0.5, 0, 0, 0, 0.5, 0.2, 0, 0, 0, 0.8,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0), nrow=5, ncol=5, byrow=TRUE)

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram
library(diagram)
plotmat(tm.tr, arr.length=0.25, arr.width=0.1, box.col="light blue",
box.lwd=1, box.prop=0.5, box.size=0.12, box.type="circle", cex.txt=0.8,
lwd=1, self.cex=0.3, self.shiftx=0.01, self.shifty=0.09)




3

, State 2 is reflective. The chain leaves that state in one step. Therefore, it forms a separate transient
class that has an infinite period.

Finally, states 3, 4, and 5 communicate and thus belong to the same class. The chain can return to
either state in this class in 3, 6, 9, etc. steps, thus the period is equal to 3. Since there is a positive
probability to leave this class, it is transient.

The R output supports these findings.

#creating Markov chain object
library(markovchain)
mc<- new("markovchain", transitionMatrix=tm,states=c("1", "2", "3", "4", "5"))

#computing Markov chain characteristics
recurrentClasses(mc)

"1"

transientClasses(mc)

"2"
"3" "4" "5"

absorbingStates(mc)

"1"

(c) Below we simulate three trajectories of the chain that start at a randomly chosen state.
4
$11.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
edulearningcentre

Conoce al vendedor

Seller avatar
edulearningcentre NURSING, ECONOMICS, MATHEMATICS, BIOLOGY, AND HISTORY MATERIALS BEST TUTORING, HOMEWORK HELP, EXAMS, TESTS, AND STUDY GUIDE MATERIALS WITH GUARANTEED A+ I am a dedicated medical practitioner with diverse knowledge in matters
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
5 meses
Número de seguidores
1
Documentos
214
Última venta
2 semanas hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes