100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Using Triangle Congruence Theorems Exam Questions And Answers Verified 100% Correct

Puntuación
-
Vendido
-
Páginas
3
Grado
A+
Subido en
09-10-2025
Escrito en
2025/2026

Using Triangle Congruence Theorems Exam Questions And Answers Verified 100% Correct Two angles and the non-included side of one triangle are congruent to the corresponding parts of another triangle. Which congruence theorem can be used to prove that the triangles are congruent? - ANSWER B. AAS Two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle. Which congruence theorem can be used to prove that the triangles are congruent? - ANSWER C. SAS Given: ∠GHD and ∠EDH are right; GH ≅ ED. Which relationship in the diagram is true? - ANSWER A. △GHD ≅ △EDH by SAS Which congruence theorem can be used to prove △WXZ ≅ △YZX? - ANSWER A. AAS Which congruence theorem can be used to prove △BDA ≅ △BDC? - ANSWER A. HL Given: ∠BCD is right; BC ≅ DC; DF ≅ BF; FA ≅ FE. Which relationships in the diagram are true? Check all that apply. - ANSWER 2. △CBF ≅ △CDF by SSS 3. △BFA ≅ △DFE by SAS 5. △CBE ≅ △CDA by HL Line segments AD and BE intersect at C, and triangles ABC and DEC are formed. They have the following characteristics: ∠ACB and ∠DCE are vertical angles ∠B ≅ ∠E BC ≅ EC Which congruence theorem can be used to prove △ABC ≅ △DEC? - ANSWER B. ASA Consider the diagram. The congruence theorem that can be used to prove △LON ≅ △LMN is - ANSWER A. SSS. Which congruency theorem can be used to prove that △ABD ≅ △DCA? - ANSWER C. SAS In the figure below, WU ≅ VT. The congruency theorem can be used to prove that △WUT ≅ △VTU. - ANSWER B. HL Which congruency theorem can be used to prove that △GHL ≅ △KHJ? - ANSWER B. ASA Analyze the diagram below. Which statements regarding the diagram are correct? Check all that apply. - ANSWER A. ST ≅ ST by the reflexive property. B. ∠RWS ≅ ∠UWT because they are vertical angles. C. △RWS ≅ △UWT by AAS. E. ∠WTU ≅ ∠WSR because CPCTC. Rowena is proving that AD ≅ EB. Which statement does the ♣ represent in her proof? - ANSWER A. ΔACD ≅ ΔECB Complete the paragraph proof. We are given AB ≅ AE and BC ≅ DE. This means ABE is an isosceles triangle. Base angles in an isosceles triangle are congruent based on the isosceles triangle theorem, so ∠ABE ≅ ∠AEB. We can then determine △ABC ≅ △AED by . Because of CPCTC, segment AC is congruent to segment . Triangle ACD is an isosceles triangle based on the definition of isosceles triangle. Therefore, based on the isosceles triangle theorem, ∠ACD ≅ ∠ADC. - ANSWER 1. SAS 2. AD Mikal is proving that AE ≅ CE . Which reason does the ♣ represent in Mikal's proof? - ANSWER D. AAS Complete the paragraph proof: It is given that ∠TUW ≅ ∠SRW and RS ≅ TU. Because ∠RWS and ∠UWT are vertical angles and vertical angles are congruent, ∠RWS ≅ ∠UWT. Then, by AAS, △TUW ≅ △SRW. Because CPCTC, SW ≅ TW and WU ≅ RW. Because of the definition of congruence, SW = TW and WU = RW. If we add those equations together, SW + WU = TW + RW. Because of segment addition, SW + WU = SU and TW + RW = TR. Then by substitution, SU = TR. If segments are equal, then they are congruent, so SU ≅ TR.

Mostrar más Leer menos
Institución
Using Triangle Congruence Theorems
Grado
Using Triangle Congruence Theorems








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Using Triangle Congruence Theorems
Grado
Using Triangle Congruence Theorems

Información del documento

Subido en
9 de octubre de 2025
Número de páginas
3
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Using Triangle Congruence Theorems Exam Questions
And Answers Verified 100% Correct

Two angles and the non-included side of one triangle are congruent to the
corresponding parts of another triangle. Which congruence theorem can be used to
prove that the triangles are congruent? - ANSWER B. AAS

Two sides and the included angle of one triangle are congruent to the corresponding
parts of another triangle. Which congruence theorem can be used to prove that the
triangles are congruent? - ANSWER C. SAS

Given: ∠GHD and ∠EDH are right; GH ≅ ED. Which relationship in the diagram is true?
- ANSWER A. △GHD ≅ △EDH by SAS

Which congruence theorem can be used to prove △WXZ ≅ △YZX? - ANSWER A. AAS
Which congruence theorem can be used to prove △BDA ≅ △BDC? - ANSWER A. HL

Given: ∠BCD is right; BC ≅ DC; DF ≅ BF; FA ≅ FE. Which relationships in the diagram
are true? Check all that apply. - ANSWER 2. △CBF ≅ △CDF by SSS
3. △BFA ≅ △DFE by SAS
5. △CBE ≅ △CDA by HL

Line segments AD and BE intersect at C, and triangles ABC and DEC are formed. They
have the following characteristics:



∠ACB and ∠DCE are vertical angles

∠B ≅ ∠E

BC ≅ EC

Which congruence theorem can be used to prove △ABC ≅ △DEC? - ANSWER B. ASA
$9.09
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
TopGradeGuru
1.5
(2)

Conoce al vendedor

Seller avatar
TopGradeGuru Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
10
Miembro desde
1 año
Número de seguidores
0
Documentos
2429
Última venta
1 mes hace
GRADEHUB

We provide access to a wide range of professionally curated exams for students and educators. It offers high-quality, up-to-date assessment materials tailored to various subjects and academic levels. With instant downloads and affordable pricing, it's the go-to resource for exam preparation and academic success.

1.5

2 reseñas

5
0
4
0
3
0
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes