100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solutions Manual – Linear Algebra and Its Applications (5th Edition) by Lay & McDonald

Puntuación
-
Vendido
-
Páginas
424
Grado
A+
Subido en
09-10-2025
Escrito en
2025/2026

INSTANT PDF DOWNLOAD — Student Solutions Manual for Linear Algebra and Its Applications (5th Edition) by David C. Lay, Steven R. Lay, and Judi J. McDonald. Covers all 7 chapters with complete worked-out solutions, step-by-step problem-solving, and conceptual explanations. Ideal for math, engineering, and data science students mastering matrices, eigenvalues, and vector spaces. Linear Algebra, Solutions Manual, David C. Lay, Steven R. Lay, Judi J. McDonald, Matrix Algebra, Eigenvalues, Vector Spaces, Linear Systems, Math Textbook, Linear Transformations, College Algebra, Linear Equations, Matrix Operations, Applied Mathematics, Engineering Math, Study Guide PDF, Problem Solutions, Math Resource, 5th Edition, Exam Preparation, Academic Solutions

Mostrar más Leer menos
Institución
Solution Manual
Grado
Solution Manual











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Solution Manual
Grado
Solution Manual

Información del documento

Subido en
9 de octubre de 2025
Número de páginas
424
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ALL 7 CHAPTERS COVERED




SOLUTIONS MANUAL

,1.1 SOLUTIONS

Notes: The key exercises are 7 (or 11 or 12), 19–22, and 25. For brevity, the symbols R1, R2,…, stand for
row 1 (or equation 1), row 2 (or equation 2), and so on. Additional notes are at the end of the section.

x1 + 5 x2 = 7  1 5 7
1.
−2 x1 − 7 x2 = −5  −2 −7 −5

x1 + 5 x2 = 7 1 5 7
Replace R2 by R2 + (2)R1 and obtain:
3x2 = 9 0 9 
 3
x1 + 5 x2 = 7 1 5 7
Scale R2 by 1/3:
x2 = 3 0 3 
 1
x1 = −8 1 0 −8
Replace R1 by R1 + (–5)R2:
x2 = 3 0 3
 1
The solution is (x1, x2) = (–8, 3), or simply (–8, 3).

2 x1 + 4 x2 = −4 2 4 −4 
2.
5 x1 + 7 x2 = 11 5 11 
 7
x1 + 2 x2 = −2 1 2 −2 
Scale R1 by 1/2 and obtain:
5 x1 + 7 x2 = 11 5 11 
 7
x1 + 2 x2 = −2 1 2 −2 
Replace R2 by R2 + (–5)R1:
−3x2 = 21 0 −3 21

x1 + 2 x2 = −2 1 2 −2 
Scale R2 by –1/3:
x2 = −7 0 −7 
 1
x1 = 12 1 0 12 
Replace R1 by R1 + (–2)R2:
x2 = −7 0 −7 
 1
The solution is (x1, x2) = (12, –7), or simply (12, –7).




1

,2 CHAPTER 1 • Linear Equations in Linear Algebra


3. The point of intersection satisfies the system of two linear equations:
x1 + 5 x2 = 7 1 5 7
x1 − 2 x2 = −2 1 −2 −2 

x1 + 5 x2 = 7 1 5 7
Replace R2 by R2 + (–1)R1 and obtain:
−7 x2 = −9 0 −7 −9 

x1 + 5 x2 = 7 1 5 7 
Scale R2 by –1/7:
x2 = 9/7 0 9/7 
 1
x1 = 4/7 1 0 4/7 
Replace R1 by R1 + (–5)R2:
x2 = 9/7 0 9/7 
 1
The point of intersection is (x1, x2) = (4/7, 9/7).

4. The point of intersection satisfies the system of two linear equations:
x1 − 5 x2 = 1 1 −5 1
3x1 − 7 x2 = 5 3 −7 5

x1 − 5 x2 = 1 1 −5 1
Replace R2 by R2 + (–3)R1 and obtain:
8 x2 = 2 0 2 
 8
x1 − 5 x2 = 1 1 −5 1
Scale R2 by 1/8:
x2 = 1/4 0 1 1/4 

x1 = 9/4 1 0 9/4 
Replace R1 by R1 + (5)R2:
x2 = 1/4 0 1/4 
 1
The point of intersection is (x1, x2) = (9/4, 1/4).

5. The system is already in “triangular” form. The fourth equation is x4 = –5, and the other equations do not
contain the variable x4. The next two steps should be to use the variable x3 in the third equation to
eliminate that variable from the first two equations. In matrix notation, that means to replace R2 by its
sum with 3 times R3, and then replace R1 by its sum with –5 times R3.

6. One more step will put the system in triangular form. Replace R4 by its sum with –3 times R3, which
 1 −6 4 0 −1
0 2 −7 0 4
produces   . After that, the next step is to scale the fourth row by –1/5.
0 0 1 2 −3
 
0 0 0 −5 15

7. Ordinarily, the next step would be to interchange R3 and R4, to put a 1 in the third row and third column.
But in this case, the third row of the augmented matrix corresponds to the equation 0 x1 + 0 x2 + 0 x3 = 1,
or simply, 0 = 1. A system containing this condition has no solution. Further row operations are
unnecessary once an equation such as 0 = 1 is evident.
The solution set is empty.

, 1.1 • Solutions 3


8. The standard row operations are:
1 −4 9 0  1 −4 9 0  1 −4 0 0  1 0 0 0
0 1 7 0  ~ 0 1 7 0  ~  0 1 0 0  ~  0 1 0 0

 0 0 2 0  0 0 1 0   0 0 1 0   0 0 1 0
The solution set contains one solution: (0, 0, 0).

9. The system has already been reduced to triangular form. Begin by scaling the fourth row by 1/2 and then
replacing R3 by R3 + (3)R4:
1 −1 0 0 −4   1 −1 0 0 −4   1 −1 0 0 −4 
0 1 −3 0 −7   0 1 −3 0 7  0 1 −3 0 −7 
 ~ ~ 
0 0 1 −3 −1  0 0 1 −3 −1 0 0 1 0 5
     
0 0 0 2 4 0 0 0 1 2 0 0 0 1 2
Next, replace R2 by R2 + (3)R3. Finally, replace R1 by R1 + R2:
1 −1 0 0 −4   1 0 0 0 4
0 1 0 0 8  0 1 0 0 8
~ ~ 
0 0 1 0 5  0 0 1 0 5
   
0 0 0 1 2 0 0 0 1 2
The solution set contains one solution: (4, 8, 5, 2).

10. The system has already been reduced to triangular form. Use the 1 in the fourth row to change the
–4 and 3 above it to zeros. That is, replace R2 by R2 + (4)R4 and replace R1 by R1 + (–3)R4. For the
final step, replace R1 by R1 + (2)R2.
1 −2 0 3 −2   1 −2 0 0 7  1 0 0 0 −3
0 1 0 −4 7  0 1 0 0 −5  0 1 0 0 −5
 ~ ~ 
0 0 1 0 6 0 0 1 0 6 0 0 1 0 6
     
0 0 0 1 −3 0 0 0 1 −3  0 0 0 1 −3
The solution set contains one solution: (–3, –5, 6, –3).

11. First, swap R1 and R2. Then replace R3 by R3 + (–3)R1. Finally, replace R3 by R3 + (2)R2.
 0 1 4 −5  1 3 5 −2   1 3 5 −2   1 3 5 −2
 1 3 5 −2  ~ 0 1 4 −5 ~ 0 1 4 −5 ~  0 1 4 −5
    
 3 7 7 6   3 7 7 6  0 −2 −8 12   0 0 0 2
The system is inconsistent, because the last row would require that 0 = 2 if there were a solution.
The solution set is empty.

12. Replace R2 by R2 + (–3)R1 and replace R3 by R3 + (4)R1. Finally, replace R3 by R3 + (3)R2.
 1 −3 4 −4   1 −3 4 −4   1 −3 4 −4 
 3 −7 
7 −8 ~  0 2 −5  
4 ~ 0 2 −5 4 

 −4 6 −1 7   0 −6 15 −9  0 0 0 3
The system is inconsistent, because the last row would require that 0 = 3 if there were a solution.
The solution set is empty.
$18.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TestBanksStuvia Chamberlain College Of Nursng
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2700
Miembro desde
2 año
Número de seguidores
1197
Documentos
1923
Última venta
14 horas hace
TESTBANKS & SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3.9

291 reseñas

5
160
4
43
3
30
2
20
1
38

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes