100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Elementary Linear Algebra (6th Edition) Andrilli & Hecker – Solutions Manual with Sample Tests

Puntuación
-
Vendido
-
Páginas
252
Grado
A+
Subido en
09-10-2025
Escrito en
2025/2026

INSTANT PDF DOWNLOAD — Complete Solutions Manual with Sample Tests for Elementary Linear Algebra (6th Edition) by Stephen Andrilli & David Hecker. Includes detailed step-by-step solutions for all chapters and sample tests for practice. Covers vector spaces, matrices, determinants, eigenvalues, and linear transformations. Ideal for math, engineering, and computer science students mastering core linear algebra concepts. Elementary Linear Algebra, Stephen Andrilli, David Hecker, Solutions Manual, Linear Algebra PDF, Vector Spaces, Matrices and Determinants, Eigenvalues and Eigenvectors, Linear Transformations, Mathematics Study Guide, Algebra Textbook, Applied Mathematics, Engineering Math, College Algebra, Problem Solutions, Sixth Edition, Study Manual PDF, Computational Mathematics, Linear Systems, Algebra Solutions, Sample Tests, Academic Resource

Mostrar más Leer menos
Institución
Algebra
Grado
Algebra

















Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Algebra
Grado
Algebra

Información del documento

Subido en
9 de octubre de 2025
Número de páginas
252
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ALL CHAPTERS COVERED




with Sample Tests

, Table of Contents

Preface ........................................................................iii

Answers to Exercises………………………………….1
Chapter 1 Answer Key ……………………………….1
Chapter 2 Answer Key ……………………………...19
Chapter 3 Answer Key ……………………………...33
Chapter 4 Answer Key ……………………………...52
Chapter 5 Answer Key ……………………………...87
Chapter 6 Answer Key …………………………….118
Chapter 7 Answer Key …………………………….128
Chapter 8 Answer Key …………………………….145
Chapter 9 Answer Key …………………………….170
Appendix B Answer Key ………………………….185
Appendix C Answer Key ………………………….186
Appendix D Answer Key ………………………….187


Chapter Tests ……..……………………………….190
Chapter 1 – Chapter Tests …………………………191
Chapter 2 – Chapter Tests …………………………194
Chapter 3 – Chapter Tests …………………………197
Chapter 4 – Chapter Tests …………………………201
Chapter 5 – Chapter Tests …………………………204
Chapter 6 – Chapter Tests …………………………210
Chapter 7 – Chapter Tests …………………………213

Answers to Chapter Tests ………………………….219
Chapter 1 – Answers for Chapter Tests …………...219
Chapter 2 – Answers for Chapter Tests …………...222
Chapter 3 – Answers for Chapter Tests …………...225
Chapter 4 – Answers for Chapter Tests …………...228
Chapter 5 – Answers for Chapter Tests …………...234
Chapter 6 – Answers for Chapter Tests …………...240
Chapter 7 – Answers for Chapter Tests …………...245


ii

,Answers to Exercises Section 1.1



Answers to Exercises
Chapter 1
Section 1.1
√ √
(1) (a) [9 −4], distance = 97 (c) [−1 −1 2 −3 −4], distance = 31

(b) [−6 1 1], distance = 38

(2) (a) (3 4 2) (see Figure 1) (c) (1 −2 0) (see Figure 3)
(b) (0 5 3) (see Figure 2) (d) (3 0 0) (see Figure 4)

(3) (a) (7 −13) (b) (6 4 −8) (c) (−1 3 −1 4 6)
¡ 16 ¢
(4) (a) 3  − 13
3 8 (b) (− 20
3  −1 −6 −1)
h i
(5) (a) √3  − √5  √6 ; shorter, since length of original vector is  1
70 70 70
£ ¤
(b) − 67  27  0 − 7 ; shorter, since length of original vector is  1
3

(c) [06 −08]; neither, since given vector is a unit vector
h i √
(d) √111  − √211  − √111  √111  √211 ; longer, since length of original vector = 511  1

(6) (a) Parallel (b) Parallel (c) Not parallel (d) Not parallel

(7) (a) [−6 12 15] (c) [−7 1 11] (e) [−10 −32 −1]
(b) [10 6 −12] (d) [−9 −2 4] (f) [−35 3 20]

(8) (a) x + y = [1 1], x − y = [−3 9], y − x = [3 −9] (see Figure 5)
(b) x + y = [3 −5], x − y = [17 1], y − x = [−17 −1] (see Figure 6)
(c) x + y = [1 8 −5], x − y = [3 2 −1], y − x = [−3 −2 1] (see Figure 7)
(d) x + y = [−2 −4 4], x − y = [4 0 6], y − x = [−4 0 −6] (see Figure 8)

√  = (7 −3 6),  = (11 −5 3), and  = (10 −7 8), the length of side  = √
(9) With length of side 
= 29. The triangle is isosceles, but not equilateral, since the length of side  is 30.

(10) (a) [10 −10] (b) [−5 3 −15] (c) [0 0] = 0

(11) See Figures 1.7 and 1.8 in Section 1.1 of the textbook.




c 2016 Elsevier Ltd. All rights reserved.
Copyright ° 1

,Answers to Exercises Section 1.1




c 2016 Elsevier Ltd. All rights reserved.
Copyright ° 2

,Answers to Exercises Section 1.1




c 2016 Elsevier Ltd. All rights reserved.
Copyright ° 3

,Answers to Exercises Section 1.1




(12) See Figure 9. Both represent the same diagonal vector by the associative law of addition for vectors.




Figure 9: x + (y + z)
√ √
(13) [05 − 06 2 −04 2] ≈ [−03485 −05657]
√ √
(14) Net velocity = [−2 2 −3 + 2 2], resultant speed ≈ 283 km/hr
h √ √ i
(15) Net velocity = − 3 2 2  8−32 2 ; speed ≈ 283 km/hr
√ √
(16) [−8 − 2 − 2]
1 12 344 392
(17) Acceleration = 20 [ 13  − 65  65 ] ≈ [00462 −02646 03015]
£ 13 4
¤
(18) Acceleration = 2  0 3
180
(19) √
14
[−2 3 1] ≈ [−9622 14432 4811]

−
√  
√ ]; b = [ 
√  √ 3 ]
(20) a = [ 1+ 3 1+ 3 1+ 3 1+ 3

(21) Let a = [1       ].

(a) kak2 = 21 + · · · + 2 is a sum of squares, which must be nonnegative. But then ||a|| ≥ 0 because
the square root of a nonnegative real number is a nonnegative real number.
(b) If ||a|| = 0, then kak2 = 21 + · · · + 2 = 0, which is only possible if every  = 0. Thus, a = 0.

(22) In each part, suppose that x = [1       ], y = [1       ], and z = [1       ].

(a) x + (y + z) = [1       ] + [(1 + 1 )     ( +  )] = [(1 + (1 + 1 ))     ( + ( +  ))]
= [((1 + 1 ) + 1 )     (( +  ) +  )] = [(1 + 1 )     ( +  )] + [1       ] = (x + y) + z
(b) x + (−x) = [1       ] + [−1      − ] = [(1 + (−1 ))     ( + (− ))] = [0     0]. Also,
(−x) + x = x + (−x) (by part (1) of Theorem 1.3) = 0, by the above.
(c) (x+y) = ([(1 +1 )     ( + )]) = [(1 +1 )     ( + )] = [(1 +1 )     ( + )] =
[1       ] + [1       ] = x + y

c 2016 Elsevier Ltd. All rights reserved.
Copyright ° 4

,Answers to Exercises Section 1.2



(d) ()x = [(()1 )     (() )] = [((1 ))     (( ))] = [(1 )     ( )]
= ([1       ]) = (x)

(23) If  = 0, done. Otherwise, ( 1 )(x) = 1 (0) =⇒ ( 1 · )x = 0 (by part (7) of Theorem 1.3) =⇒ x = 0
Thus either  = 0 or x = 0.
(24) 1 x = 2 x =⇒ 1 x − 2 x = 0 =⇒ (1 − 2 )x = 0 =⇒ (1 − 2 ) = 0 or x = 0 by Theorem 1.4. But
since 1 6= 2  (1 − 2 ) 6= 0 Hence, x = 0

(25) (a) F (b) T (c) T (d) F (e) T (f) F (g) F (h) F

Section 1.2
27
(1) (a) arccos(− 5√37
), or about 1526◦ , or 266 radians
(b) arccos( √7446√29 ), or about 68◦ , or 012 radians

(c) arccos(0), which is 90◦ , or 2 radians
435√
(d) arccos(− √2175 87
) = arccos(−1), which is 180◦ , or  radians (since x = −5y)

(2) The vector from 1 to 2 is [2 −7 −3], and the vector from 1 to 3 is [5 4 −6]. These vectors are
orthogonal.
(3) (a) [ ] · [− ] = (−) +  = 0 Similarly, [ −] · [ ] = 0
(b) A vector in the direction of the line  +  +  = 0 is [ −], while a vector in the direction of
 −  +  = 0 is [ ].
√ √
1040 5
(4) (a) 15 joules (b) 9 ≈ 2584 joules (c) − 1895 15
≈ −1464 joules

(5) Note that y·z is a scalar, so x·(y·z) is not defined.
(6) In all parts, let x = [1  2       ]  y = [1  2       ]  and z = [1  2       ] 

(a) x · y = [1  2       ] · [1  2       ] = 1 1 + · · · +   = 1 1 + · · · +  
= [1  2       ] · [1  2       ] = y · x
(b) x · x = [1  2       ] · [1  2       ] = 1 1 + · · · +   = 21 + · · · + 2 . Now 21 + · · · + 2
is a sum of squares, each of which must be nonnegative. Hence, the sum is also nonnegative, and
³p ´2
so its square root is defined. Thus, 0 ≤ x · x = 21 + · · · + 2 = 21 + · · · + 2 = kxk2 .
(c) Suppose x · x = 0. From part (b), 0 = x · x = 21 + · · · + 2 ≥ 2 , for each , since all terms in the
sum are nonnegative. Hence, 0 ≥ 2 for each . But 2 ≥ 0, because it is a square. Hence each
 = 0. Therefore, x = 0.
(d) (x · y) =  ([1  2       ] · [1  2       ]) =  (1 1 + · · · +   )
= 1 1 + · · · +   = [1  2       ] · [1  2       ] = (x) · y.
Next, (x · y) = (y · x) (by part (a)) = (y) · x (from above) = x · (y), by part (a)




c 2016 Elsevier Ltd. All rights reserved.
Copyright ° 5

,Answers to Exercises Section 1.2



(e) (x + y) · z = ([1  2       ] + [1  2       ]) · [1  2       ]
= [1 + 1  2 + 2       +  ] · [1  2       ]
= (1 + 1 )1 + (2 + 2 )2 + · · · + ( +  )
= (1 1 + 2 2 + · · · +   ) + (1 1 + 2 2 + · · · +   )
Also, (x · z) + (y · z) = ([1  2       ] · [1  2       ]) + ([1  2       ] · [1  2       ])
= (1 1 + 2 2 + · · · +   ) + (1 1 + 2 2 + · · · +   ).
Hence, (x + y) · z = (x · z) + (y · z).

(7) No; consider x = [1 0], y = [0 1], and z = [1 1].
(8) A method similar to the first part of the proof of Lemma 1.6 in the textbook yields:
2
ka − bk ≥ 0 =⇒ (a · a) − (b · a) − (a · b) + (b · b) ≥ 0 =⇒ 1 − 2(a · b) + 1 ≥ 0 =⇒ a · b ≤ 1.
(9) Note that (x + y)·(x − y) = (x·x) + (y·x) − (x·y) − (y·y) = kxk2 − kyk2 . Hence, (x + y)·(x − y) = 0
implies kxk2 = kyk2 , which means kxk = kyk (since both are nonnegative)
(10) Note that kx + yk2 = kxk2 + 2(x·y) + kyk2 , while kx − yk2 = kxk2 − 2(x·y) + kyk2 .
Hence, 21 (kx + yk2 + kx − yk2 ) = 12 (2kxk2 + 2kyk2 ) = kxk2 + kyk2 
(11) (a) From the first equation in the solution to Exercise 10 above, kx + yk2 = kxk2 + kyk2 implies
2(x·y) = 0 which means x·y = 0.
(b) From the first equation in the solution to Exercise 10 above, x·y = 0 implies kx+yk2 = kxk2 +kyk2 .
(12) Note that kx + y + zk2 = k(x + y) + zk2
= kx + yk2 + 2((x + y)·z) + kzk2
= kxk2 + 2(x·y) + kyk2 + 2(x·z) + 2(y·z) + kzk2
= kxk2 + kyk2 + kzk2  since x, y, z are mutually orthogonal.
(13) From the first two equations in the solution for Exercise 10 above,
1
4 (kx + yk2 − kx − yk2 ) = 14 (4(x·y)) = x·y.
(14) Since x is orthogonal to both y and z, we have x·(1 y + 2 z) = 1 (x·y) + 2 (x·z) = 1 (0) + 2 (0) = 0

(15) Suppose y = x, for some  6= 0 Then, x · y = x·(x) =  (x · x) =  kxk2 = kxk ( kxk) = kxk (±|| kxk)
= ± kxk kxk = ± kxk kyk 
√ √
3
(16) (a) Length = 3 (b) angle = arccos( 3 ) ≈ 547◦ , or 0955 radians

(17) (a) proja b = [− 35  − 10
3
 − 32 ]; b − proja b = [ 85  43 3
10  − 2 ]; (b − proja b) · a = 0
(b) proja b = [− 65  1 25 ]; b − proja b = [− 14 8
5  −4 5 ]; (b − proja b) · a = 0
(c) proja b = [ 16  0 − 61  13 ]; b − proja b = [ 17 1 4
6  −1 6  − 3 ]; (b − proja b) · a = 0
(d) proja b = [−1 23  −2 − 23 ]; b − proja b = [6 − 12  −6 72 ]; (b − proja b) · a = 0
(18) (a) 0 (zero vector). The dropped perpendicular travels along b to the common initial point of a and
b.
(b) The vector b. The terminal point of b lies on the line through a, so the dropped perpendicular
has length zero.

c 2016 Elsevier Ltd. All rights reserved.
Copyright ° 6

,Answers to Exercises Section 1.2



(19) i, j, k
(20) (a) Parallel: [ 20 30 40 194 88 163
29  − 29  29 ], orthogonal: [− 29  29  29 ]
(b) Parallel: [− 12  1 − 21 ], orthogonal: [− 11 15
2  1 2 ]
(c) Parallel: [ 60 40 120 354 138 223
49  − 49  49 ], orthogonal: [− 49  49  49 ]

(21) From the lower triangle in the figure, we have (projr x) + (projr x − x) = reflection of x (see Figure
10).




Figure 10: Reflection of a vector x through a line.
(22) For the case kxk ≤ kyk: | kxk − kyk | = kyk − kxk = kx + y + (−x)k − kxk ≤ kx + yk + k − xk − kxk
(by the Triangle Inequality) = kx + yk + kxk − kxk = kx + yk.
The case kxk ≥ kyk is done similarly, with the roles of x and y reversed.
(23) (a) Note that projx y = [ 58  − 65  2] = 25 x and y − projx y = [ 75  − 24
5  −4] is orthogonal to x.
Let w = y − projx y Then since y = projx y + (y − projx y) we have y = 25 x + w where w is
orthogonal to x.
(b) Let  = (x·y)(kxk2 ) (so that x = projx y), and let w = y − projx y which is orthogonal to x
by the argument before Theorem 1.11. Then y = x + w, where w is orthogonal to x.
(c) Suppose x+w = x+v. Then (−)x = w−v, and (−)x·(w−v) = (w−v)·(w−v) = kw−vk2 .
But ( − )x·(w − v) = ( − )(x·w) − ( − )(x·v) = 0, since v and w are orthogonal to x. Hence
kw − vk2 = 0 =⇒ w − v = 0 =⇒ w = v. Then, x = x =⇒  = , from Theorem 1.4, since x is
nonzero.
(24) If  is the angle between x and y, and  is the angle between projx y and projy x, then
³ ´ ³ ´ ³ ´³ ´
x·y y·x x·y y·x
projx y · projy x kxk 2 x · kyk 2 y kxk 2
kyk 2 (x · y)
cos  = ° ° = °³ ´ ° °³ ´ °=³ ´ ³ ´
kprojx yk °projy x° ° x·y ° ° y·x
° kxk2 x° ° kyk 2 y°
° |x·y|
2 kxk |y·x|
2 kyk
kxk kyk
³ 3
´
(x·y)
kxk2 kyk2 (x · y)
= ³ ´ = = cos 
(x·y)2 kxk kyk
kxkkyk

Hence  = .

c 2016 Elsevier Ltd. All rights reserved.
Copyright ° 7

, Answers to Exercises Section 1.3



(25) (a) T (b) T (c) F (d) F (e) T (f) F

Section 1.3
(1) (a) We have k4x + 7yk ≤ k4xk + k7yk = 4kxk + 7kyk ≤ 7kxk + 7kyk = 7(kxk + kyk).
(b) Let  = max{|| ||}. Then kx ± yk ≤ (kxk + kyk).
(2) (a) Note that 6 − 5 = 3(2( − 1)) + 1. Let  = 2( − 1).
(b) Consider the number 4.
(3) Note that since x 6= 0 and y 6= 0, projx y = 0 iff (x·y)(kxk2 ) = 0 iff x·y = 0 iff y·x = 0 iff
(y·x)(kyk2 ) = 0 iff projy x = 0.
(4) If y = x (for   0), then kx + yk = kx + xk = (1 + )kxk = kxk + kxk = kxk + kxk = kxk + kyk.
On the other hand, if kx + yk = kxk + kyk, then kx + yk2 = (kxk + kyk)2 . Now kx + yk2 =
(x + y)·(x + y) = kxk2 + 2(x·y) + kyk2 , while (kxk + kyk)2 = kxk2 + 2kxkkyk + kyk2 . Hence
x·y = kxkkyk. By Result 4, y = x, for some   0.
(5) (a) Suppose y 6= 0. We must show that x is not orthogonal to y. Now kx + yk2 = kxk2 , so
kxk2 + 2(x·y) + kyk2 = kxk2 . Hence kyk2 = −2(x·y). Since y 6= 0, we have kyk2 6= 0, and so
x·y 6= 0.
(b) Suppose x is not a unit vector. We must show that x·y 6= 1.
Now projx y = x =⇒ ((x·y)(kxk2 ))x = 1x =⇒ (x·y)(kxk2 ) = 1 =⇒ x·y = kxk2 .
But then kxk 6= 1 =⇒ kxk2 6= 1 =⇒ x·y 6= 1.
(6) (a) Consider x = [1 0 0] and y = [1 1 0].
(b) If x 6= y, then x · y 6= kxk2 .
(c) Yes
(7) See the answer for Exercise 11(a) in Section 1.2.
(8) If kxk  kyk, then kxk2  kyk2 , and so kxk2 − kyk2  0 But then (x + y)·(x−y)  0 and so the
cosine of the angle between (x + y) and (x−y) is positive. Thus the angle between (x + y) and (x−y)
is acute.
(9) (a) Contrapositive: If x = 0, then x is not a unit vector.
Converse: If x is nonzero, then x is a unit vector.
Inverse: If x is not a unit vector, then x = 0.
(b) (Let x and y be nonzero vectors.)
Contrapositive: If y 6= projx y, then x is not parallel to y.
Converse: If y = projx y, then x k y.
Inverse: If x is not parallel to y, then y 6= projx y.
(c) (Let x, y be nonzero vectors.)
Contrapositive: If projy x 6= 0, then projx y 6= 0.
Converse: If projy x = 0, then projx y = 0.
Inverse: If projx y 6= 0, then projy x 6= 0.
(10) (a) Converse: Let x and y be nonzero vectors in R . If kx + yk  kyk, then x·y ≥ 0.


c 2016 Elsevier Ltd. All rights reserved.
Copyright ° 8
$18.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TestBanksStuvia Chamberlain College Of Nursng
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2671
Miembro desde
2 año
Número de seguidores
1194
Documentos
1925
Última venta
1 día hace
TESTBANKS & SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3.9

284 reseñas

5
157
4
42
3
29
2
20
1
36

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes