100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary articles and book chapters - HR analytics (760819-M-6)

Puntuación
-
Vendido
-
Páginas
41
Subido en
07-10-2025
Escrito en
2025/2026

A compact summary of all the articles and chapters from the books for the exam of HR analytics. Complete! #1 Edwards & Edwards (2019) Chapter 1: Understanding HR analytics Chapter 2: Analytical foundations of HR measurement Chapter 3: Analysis strategies Chapter 4: Case study 1 Diversity analytics Chapter 12: Reflection on HR analytics - usage, ethics and limitations #2 Khan & Millner (2020) Chapter 1: Redefining HR Chapter 2: The age of data and people analytics Chapter 5: Working with data Chapter 6: A people analytics framework - laying the foundation through metrics, reporting, core analytical activities Chapter 7: A people analytical framework - identifying business insights from analytics Chapter 8: Delivering people analytics projects Chapter 10: The road ahead #13 Peeters et al. (2020) #9 Levenson & Fink (2017) #3 Cascio et. al (2019) Chapter 1: HR measurements make investing in people more strategic Chapter 2: Analytical foundations of HR measurement #8 Heuvel & Bondarouk (2017) #6 Angrave et al. (2016) #5 Charmorro-Premuzic et al. (2019) #7 Rasmussen & Ulrich (2015) #10 C.I.P.D. (2018) #11 Henke et al. (2018) #12 Van der Laken (2018)

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
7 de octubre de 2025
Número de páginas
41
Escrito en
2025/2026
Tipo
Resumen

Temas

Vista previa del contenido

ARTICLES HR ANALYTICS
#1 Edwards & Edwards (2019)​ 2
Chapter 1: Understanding HR analytics​ 2
Chapter 2: Analytical foundations of HR measurement​ 3
Chapter 3: Analysis strategies​ 4
Chapter 4: Case study 1 Diversity analytics​ 5
Chapter 12: Reflection on HR analytics - usage, ethics and limitations​ 8
#2 Khan & Millner (2020)​ 10
Chapter 1: Redefining HR​ 10
Chapter 2: The age of data and people analytics​ 12
Chapter 5: Working with data​ 13
Chapter 6: A people analytics framework - laying the foundation through metrics,
reporting, core analytical activities​ 15
Chapter 7: A people analytical framework - identifying business insights from analytics​16
Chapter 8: Delivering people analytics projects​ 17
Chapter 10: The road ahead​ 20
#13 Peeters et al. (2020)​ 23
#9 Levenson & Fink (2017)​ 24
#3 Cascio et. al (2019)​ 26
Chapter 1: HR measurements make investing in people more strategic​ 26
Chapter 2: Analytical foundations of HR measurement​ 27
#8 Heuvel & Bondarouk (2017)​ 31
#6 Angrave et al. (2016)​ 33
#5 Charmorro-Premuzic et al. (2019)​ 35
#7 Rasmussen & Ulrich (2015)​ 37
#10 C.I.P.D. (2018)​ 39
#11 Henke et al. (2018)​ 40
#12 Van der Laken (2018)​ 41




1

,#1 Edwards & Edwards (2019)

Chapter 1: Understanding HR analytics
●​ Different meanings of “predictive”
○​ Predictors/drivers: identifying causal factors that explain variation (e.g., why
performance or turnover differs).
○​ Predictive modelling: applying models to estimate what happens if we change
or adjust these drivers.
○​ Forecasting: using models to predict how current or future employees/teams
will behave.​

●​ Data quality & Big Data challenge
○​ Success of predictive HR analytics depends entirely on good-quality people
data.
○​ The issue is often not too little, but too much data (“big data”).
○​ Key HR data: skills, qualifications, competencies, training, engagement,
customer satisfaction, performance reviews, pay/bonus.​

●​ Competence gap in HR
○​ Few HR professionals have the statistical skills to perform predictive
analytics.
○​ HR training (e.g., CIPD, SHRM, AHRI) often downplays quantitative/statistical
training → creating a major capability gap.​

●​ Business case & application
○​ Predictive analytics helps identify drivers of performance, retention,
engagement, etc.
○​ Analytics results must always be translated into a “So what?” answer →
implications for strategy and decision-making.​

●​ HR analytics as a strategic driver
○​ Predictive models can guide HR strategy, monitor intervention impact, and
improve decisions on hiring, turnover, and performance.
○​ Provides HR with a more credible, evidence-based role in the organization.​

●​ Becoming a persuasive HR function
○​ Developing analytic literacy (Huselid & Becker) is the next step for HR’s
evolution.
○​ Predictive HR analytics allows HR to show evidence on: who will perform
well, who may leave, which interventions work, etc.
○​ Enables “what if” scenario modelling → stronger business cases and ROI
justification.




2

,Chapter 2: Analytical foundations of HR measurement
Data sources in HR analytics

●​ HR databases (e.g., SAP, Oracle): personal details, performance, salary, diversity,
absence, promotions, leavers.
●​ Employee surveys: engagement, job satisfaction, person–organization fit.
●​ Customer satisfaction surveys: preferences, loyalty, ratings of
branches/employees.
●​ Sales data: revenue, new customers, target achievement.​
Operational data: call center efficiency, onboarding times, supermarket scan rates.
●​ Key insight: linking data across systems reveals drivers of outcomes (e.g., L&D
training + customer satisfaction).

Software for HR analytics

●​ SPSS: user-friendly, menu-driven, widely used in HR, good for manipulation and
reporting.
●​ Minitab: very simple, menu-based, but less flexible.
●​ Stata: command-driven, strong for economists, more complex.
●​ SAS: powerful for big data, command-driven, steep learning curve.
●​ R: free, flexible, but requires coding skills. Excellent for advanced methods.
●​ JASP: new, free, easy GUI; still developing.​


SPSS environment

●​ Data view: each row = a case (employee), each column = a variable (e.g., age,
gender), each cell = a value.
●​ Variable view: define name, type (numeric, string, date), labels, missing values,
measure level (nominal, ordinal, scale).
●​ Important: coding categorical data numerically (e.g., Gender: 0 = Female, 1 = Male)
enables richer statistical analysis.​


Data preparation

●​ Import Excel/CSV files into SPSS, copy-paste data, define variables before analysis.
●​ Merge datasets with a unique key (Employee ID). Sorting by key variable ensures
successful merges.
●​ Recode text (e.g., “Marketing” → 1, “Sales” → 2) into numeric values for analysis.​


Big Data in HR

●​ Defined by the 3 Vs: volume, velocity, variety.
●​ Database types:
○​ Relational (SAP, Oracle) – structured, table-based.
○​ Multidimensional (OLAP, Cognos) – fast for reporting/warehousing.


3

, ○​ Object-oriented (Workday) – flexible, stores “objects” like Employee with
rules.
○​ NoSQL (Hadoop) – handles massive, unstructured datasets.
●​ Business benefits: transparency, experimentation, segmentation, better
decision-making, fraud/error reduction.
●​ Challenge: shortage of people with deep analytical skills




Chapter 3: Analysis strategies
From descriptive to predictive HR analytics

●​ Descriptive: reports, averages, dashboards (historical).
●​ Predictive: identifies drivers and forecasts outcomes.
●​ Descriptive is useful but limited (snapshot view, no causality). Predictive adds
strategic value.

Statistical significance

●​ Hypothesis testing: null (H0) vs. research (H1).
●​ p-values: <0.05 (95% confidence), <0.01, <0.001 (stronger evidence).
●​ Significance ≠ importance; effect size matters.​


Types of data

●​ Categorical:
○​ Binary (Yes/No), Nominal (e.g., gender, department), Ordinal (e.g., salary
bands, performance ratings).
●​ Continuous:
○​ Interval (e.g., temperature), Ratio (e.g., tenure, salary, height).
●​ Data type determines which test is appropriate.​


Variables

●​ Independent variable (X) → predictor.
●​ Dependent variable (Y) → outcome.
●​ Example: Training (X) → Customer satisfaction (Y).​


Which test to use?

●​ Chi-square: categorical X × categorical Y. ​
​ Example: Gender → Promotion.​



4
$9.33
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
emmahamm Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
262
Miembro desde
4 año
Número de seguidores
108
Documentos
60
Última venta
1 semana hace

4.1

30 reseñas

5
15
4
7
3
6
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes