100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

ISYE 6402 / ISYE 6402 FINAL EXAM (LATEST UPDATE 2026 / 2027) TIME SERIES ANALYSIS | QUESTIONS & ANSWERS | GRADE A | 100% CORRECT –

Puntuación
-
Vendido
-
Páginas
62
Grado
A+
Subido en
07-10-2025
Escrito en
2025/2026

Prepare effectively for the ISYE 6402 Time Series Analysis Final Exam with our comprehensive collection of practice questions and answers. Covering topics from stationarity, ARIMA modeling, forecasting, seasonality, GARCH, VAR, and structural breaks, these exam-style questions (Q1–160) are designed to mirror real test formats. Each question includes multiple-choice options (A–D), correct answers, and clear explanations to strengthen your understanding. Ideal for students, professionals, and data analysts aiming for top grades in 2025–2026. Boost your confidence, master key concepts, and achieve exam success with this structured, high-quality time series study resource. Perfect for final exam revision

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Grado

Información del documento

Subido en
7 de octubre de 2025
Número de páginas
62
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ISYE 6402 / ISYE 6402 FINAL EXAM (LATEST UPDATE 2026 /
2027) TIME SERIES ANALYSIS | QUESTIONS & ANSWERS |
GRADE A | 100% CORRECT –



1. Stationarity Concepts

A time series {Xt} is said to be weakly stationary if certain statistical
properties remain constant over time.
Which of the following best describes this property?

A. All higher-order moments of the distribution remain constant for all t
B. The full joint distribution remains the same under any time shift
C. The mean is constant, and the autocovariance depends only on the lag
D. There is no autocorrelation present at any lag

Correct Answer: C
Explanation: Weak stationarity requires constant mean and autocovariances
depending only on lag.



2. AR(1) Variance Calculation

Consider the stationary AR(1) model
Xt = 0.6 Xt−1 + εt,
where εt is white noise with variance 1. What is the long-run variance of Xt?

A. 1.00
B. 1.25
C. 1.56
D. 2.50

Correct Answer: C
Explanation: Var(X) = σ² / (1 − φ²) = 1 / (1 − 0.36) = 1.5625.

,3. Identifying Model from ACF/PACF

A time series has an autocorrelation function (ACF) with large spikes at lags
1 and 2 and near zero afterward.
The partial autocorrelation function (PACF) decays slowly without a sharp
cutoff. Which model fits best?

A. AR(2)
B. MA(2)
C. ARMA(1,1)
D. AR(1)

Correct Answer: B
Explanation: MA(q) models have an ACF cutoff at lag q and a PACF that
tails off gradually.



4. Seasonality in Time Series

You are analyzing monthly data and the ACF shows strong peaks at lags 12,
24, and 36.
This indicates a repeating seasonal pattern. Which type of model is most
appropriate?

A. Non-seasonal ARIMA(1,1,1)
B. SARIMA(p,d,q)(P,D,Q)12
C. Linear regression with a time trend only
D. Random walk without drift

Correct Answer: B
Explanation: Seasonal ARIMA handles periodic patterns through seasonal
differencing and seasonal terms.



5. Ljung–Box Test Interpretation

,The Ljung–Box test is applied to a time series to assess its autocorrelation
structure.
What is the null hypothesis of this test?

A. The series has a unit root
B. The series is Gaussian
C. There is no autocorrelation up to a specified number of lags
D. The series is heteroskedastic

Correct Answer: C
Explanation: Ljung–Box tests whether autocorrelations jointly equal zero,
indicating white noise.



6. ARIMA Model Representation

Consider an ARIMA(1,1,1) model.
Which of the following correctly represents the model in first-difference
form?

A. Xt = φ Xt−1 + θ εt−1 + εt
B. (1 − φB) ΔXt = (1 + θB) εt
C. ΔXt = φ ΔXt−1 + εt
D. (1 − B) Xt = φ Xt−1 + εt

Correct Answer: B
Explanation: ARIMA(1,1,1) applies both differencing and ARMA structure
to ΔXt.


7. Model Identification from ACF

A time series shows an ACF that cuts off after lag 2 but a PACF that decays
gradually.
Which model is most likely appropriate?

A. AR(2)
B. MA(2)

, C. ARMA(2,2)
D. AR(1)

Correct Answer: B
Explanation: For MA(q), ACF cuts off at lag q, while PACF tails off.


8. ADF Unit Root Test

The Augmented Dickey–Fuller (ADF) test is commonly used to assess
stationarity.
What is the null hypothesis of this test?

A. The series is stationary
B. The series has a unit root (nonstationary)
C. The series is white noise
D. The series is heteroskedastic

Correct Answer: B
Explanation: ADF null hypothesis states the presence of a unit root.


9. One-Step Forecast for AR(1)

For Xt = 0.8 Xt−1 + εt with Var(εt) = 4 and X100 = 5,
what is the 1-step-ahead forecast and its mean squared error?

A. Forecast 4, MSE 1
B. Forecast 4, MSE 4
C. Forecast 0.8, MSE 4
D. Forecast 5, MSE 0.64

Correct Answer: B
Explanation: Forecast = 0.8 × 5 = 4, and MSE = Var(εt) = 4.


10. Forecast Interval Types
$12.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
HealthStudyPro Johns Hopkins School Of Public Health
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
110
Miembro desde
8 meses
Número de seguidores
16
Documentos
1406
Última venta
1 día hace
HealthStudyPro

Welcome to HealthStudyPro – Your 24/7 Partner for Nursing & Healthcare Exam Success! At HealthStudyPro, we provide premium, A+ rated study materials to help nursing and healthcare students excel in their exams. Whether you're preparing for the HESI RN Exit Exam, ATI, NCLEX, or other critical assessments, we’ve got you covered with accurate, up-to-date, and verified resources.

4.2

34 reseñas

5
20
4
4
3
8
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes