100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Title: A Complete Solution Guide to Principles of Mathematical Analysis (by Kit-Wing Yu, 2019) | Full Step-by-Step Solutions to Rudin’s Classic Textbook “Principles of Mathematical Analysis” (3rd Edition) with Detailed Proofs, Explanations, and Exercises

Puntuación
-
Vendido
-
Páginas
387
Grado
A+
Subido en
05-10-2025
Escrito en
2025/2026

The Complete Solution Guide to Principles of Mathematical Analysis by Kit-Wing Yu (2019) is the definitive companion for students studying from Walter Rudin’s famous Principles of Mathematical Analysis (3rd Edition). Known affectionately as “Baby Rudin,” this foundational text in real analysis is widely used across undergraduate and graduate mathematics programs—and this guide provides comprehensive, detailed, and carefully explained solutions to every exercise, making it an essential tool for mastering rigorous mathematical reasoning. This book is structured to align directly with the chapters and problem sets in Rudin’s text, offering step-by-step derivations and clear justifications for every theorem, lemma, and result. Kit-Wing Yu’s guide is especially valuable for self-learners, mathematics majors, and instructors seeking to verify or illustrate formal proofs. Each solution emphasizes logical structure, mathematical precision, and clarity of explanation, helping readers not only find answers but truly understand the underlying principles.

Mostrar más Leer menos
Institución
Mathematical Analysis
Grado
Mathematical Analysis











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Mathematical Analysis
Grado
Mathematical Analysis

Información del documento

Subido en
5 de octubre de 2025
Número de páginas
387
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Covers All 11 Chapters

,List of Figures


2.1 The neighborhoods Nh(q) and Nr(p) .............................................................................................. 13
2.2 Convex sets and nonconvex sets ..................................................................................................... 23
2.3 The sets Nh(x), N2h (x) and Nqm (xk) ............................................................................................ 25
2.4 The construction of the shrinking sequence.................................................................................... 29

3.1 The Cantor set ................................................................................................................................ 49

4.1 The graph of g on [an, bn]. .............................................................................................................. 59
4.2 The sets E and Ini ......................................................................................................................... 63
4.3 The graphs of [x] and√(x) ............................................................................................................... 70
4.4 An example for α = 2 and n = 5............................................................................................... 72
4.5 The distance from x ∈ X to E ........................................................................................................ 74
4.6 The graph of a convex function f ................................................................................................... 76
4.7 The positions of the points p, p + κ, q — κ and q ........................................................................... 77

5.1 The zig-zag path of the process in (c) .......................................................................................... 105
5.2 The zig-zag path induced by the function f in Case (i)........................................................... 108
5.3 The zig-zag path induced by the function g in Case (i) ............................................................ 109
5.4 The zig-zag path induced by the function f in Case (ii)......................................................... 109
5.5 The zig-zag path induced by the function g in Case (ii) .......................................................... 110
5.6 The geometrical interpretation of Newton’s method ..................................................................... 111

8.1 The graph of the continuous function y = f (x) = (π — |x|)2 on [—π, π]. .................................... 186
8.2 The graphs of the two functions f and g...................................................................................... 197
8.3 A geometric proof of 0 < sin x ≤ x on (0, π ]. ............................................................................. 199
8.4 2
The graph of y = | sin x| ................................................................................................................ 199
8.5 The winding number of γ around an arbitrary point p................................................................ 202
8.6 The geometry of the points z, f (z) and g(z) ................................................................................ 209

9.1 An example of the range K of f................................................................................................... 219
9.2 The set of q ∈ K such that (∇f3)(f —1(q)) = 0........................................................................... 220
9.3 Geometric meaning of the implicit function theorem ................................................................... 232
9.4 The graphs around the four points ................................................................................................ 233
9.5 The graphs around (0, 0) and (1, 0).............................................................................................. 236
9.6 The graph of the ellipse X 2 + 4Y 2 = 1 ..................................................................................... 239
9.7 The definition of the function ϕ(x, t) ............................................................................................ 243
9.8 The four regions divided by the two lines αx1 + βx2 = 0 and αx 1 — βx2 = 0.......................... 252

10.1 The compact convex set H and its boundary ∂H ........................................................................ 256
10.2 The figures of the sets Ui, Wi and Vi ................................................................................................................................................ 264
10.3 The mapping T : I2 → H ............................................................................................................ 269
10.4 The mapping T : A → D.............................................................................................................. 270
10.5 The mapping T : A◦ → D0 ...........................................................................................................................................................................271
10.6 The mapping T : S → Q .............................................................................................................. 277

vii




@LECTSOLUTIONSSTUVIA

,List of Figures viii

10.7 The open sets Q0.1 , Q0.2 and Q .................................................................................................... 278
10.8 The mapping T : I3 → Q3. .......................................................................................................... 280
10.9 The mapping τ1 : Q2 → I2 ......................................................................................................................................................................... 288
10.10 The mapping τ2 : Q2 → I2 ......................................................................................................................................................................... 289
10.11 The mapping τ2 : Q2 → I2 .........................................................................................................................................................................289
10.12 The mapping Φ : D → R2 \ {0} . .................................................................................................. 296
10.13 The spherical coordinates for the point Σ(u, v) ........................................................................... 300
10.14 The rectangles D and E............................................................................................................... 302
10.15 An example of the 2-surface S and its boundary ∂S ................................................................... 304
10.16 The unit disk U as the projection of the unit ball V................................................................... 325
10.17 The open cells U and V ................................................................................................................ 326
10.18 The parameter domain D............................................................................................................... 332
10.19 The figure of the Möbius band ...................................................................................................... 333
10.20 The “geometric” boundary of M................................................................................................... 335

11.1 The open square Rδ((p, q)) and the neighborhood N√2δ ((p, q)) .................................................. 350

B.1 The plane angle θ measured in radians.......................................................................................... 365
B.2 The solid angle Ω measured in steradians..................................................................................... 366
B.3 A section of the cone with apex angle 2θ ..................................................................................... 366

, List of Tables


6.1 The number of intervals & end-points and the length of each interval for each En.................................121

9.1 Expressions of x around four points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
9.2 Expressions of y around four points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235




ix





@LECTSOLUTIONSSTUVIA
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
LECTJULIESOLUTIONS Havard School
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
9
Miembro desde
11 meses
Número de seguidores
0
Documentos
312
Última venta
1 mes hace
JULIESOLUTIONS ALL STUDY GUIDES

You will get solutions to all subjects in both assignments and major exams. Contact me for any assisstance. Good luck! Simple well-researched education material for you. Expertise in Nursing, Mathematics, Psychology, Biology etc,. My Work contains the latest, updated Exam Solutions, Study Guides, Notes 100% verified Guarantee .

5.0

2 reseñas

5
2
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes