100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

CS 7643 Quiz 3 Georgia Institute of Technology Questions and Answers|2026 Update

Puntuación
-
Vendido
-
Páginas
6
Grado
A+
Subido en
04-10-2025
Escrito en
2025/2026

CS 7643 Quiz 3 Georgia Institute of Technology Questions and Answers|2026 Update

Institución
CS 7643 Qiz 3 Georgia Institute Of Technology
Grado
CS 7643 Qiz 3 Georgia Institute of Technology









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
CS 7643 Qiz 3 Georgia Institute of Technology
Grado
CS 7643 Qiz 3 Georgia Institute of Technology

Información del documento

Subido en
4 de octubre de 2025
Número de páginas
6
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

CS 7643 Quiz 3 Georgia Institute of Technology Questions and
Answers|2026 Update

Modeling Error

Given a particular NN architecture, the actual model that represents the real world may not be in that
space.

When model complexity increases, modeling error reduces, but optimization error increases.

Estimation Error

Even if finding the best hypothesis, weights, and parameters that minimize training error, may not
generalize to test set

Optimization Error

Even if your NN can perfectly model the world, your algo may not find good weights that model the
function.

When model complexity increases, modeling error reduces, but optimization error increases.

Effectiveness of transfer learning under certain conditions

Remove last FC layer of CNN and initialize it randomly, then run new data through network to train only
that layer
In order to train the NN for transfer learning -freeze the CNN layers or early layers and learn parameters
in the FC layers.
Performs very well on very small amount of training, if similar to the original data
Does not work very well if the target task's dataset is very different
If you have enough data in the target domain, and is different than the source, better to just train on the
new data


Transfer learning = reuse features we learn on a very large dataset on a completely new thing
Steps:
Train on very large dataset
Take custom dataset and initialize network with weights trained in Step 1 (replace last fully connected
layer since classes in new network will be different)
Final step -> continue training on new dataset
Can either retrain all weights ("finetune") or freeze (ie: not update) weights in certain layers (freezing
reduces number of parameters that you need to learn)

AlexNet

, 2x(CONV=>MAXPOOL=>NORM)=>3xCONV=>MAXPOOL=>3xFC
ReLU, specialized normalization layers, PCA-based data augmentation, Dropout, Ensembling (used 7 NN
with different random weights)
Critical development: More depth and ReLU

VGGNet

2x(2xCONV=>POOL)=>3x(3xCONV=>POOL)=>3xFC
Repeated Application of 3x3 Conv (stride of 1, padding of) & 2x2 Max Pooling (stride 2) blocks
Very large number of parameters (most in FC) layers, most memory in Conv Layers (you are storing
activation produced in forward pass)
Critical Development: Blocks of repeated structures

Inception Net

Deeper and more complex than VGGNet
Average Pooling before FC Layer
Repeated blocks that are repeated over again to form NN
Blocks are made of simple layers, FC, Conv, MaxPool, and softmax
Parallel filters of different sizes to get features at multiple scales
Critical Development: Blocks of parallel paths
Uses Network In Network concept i.e 1x1 Convolution -sort of Dimensionality reduction see slide
Negative things: Increased Computational Work

ResNet

Allow information from a layer to propagate to a future layer
Passes residuals of a layer at depth x and adds it to the output of the layer at x+1
Averaging block at end
Critical Development: Passing residuals of previous layers forward

Convolutional layers and how they work (forward/backward)

https://www.youtube.com/watch?v=Lakz2MoHy6o&t=1299s

(Don't have a good short summary)

Equivariance

If the input changes, the output changes in the same way if f(g(x) =g(f(x). If the beak of a bird in a picture
moves a bit, the output values will move in the same way

change to input causes equal change to output

Invariance

If the input changes, the output stays the same. That is f(g(x)) = f(x) E.g. rotating/scaling a number will
still result in that number being classified the same..

change to input does not affect output
$23.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
studyguidepro NURSING
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
51
Miembro desde
3 meses
Número de seguidores
3
Documentos
1187
Última venta
4 horas hace
verified exams

Updated exams .Actual tests 100% verified.ATI,NURSING,PMHNP,TNCC,USMLE,ACLS,WGU AND ALL EXAMS guaranteed success.Here, you will find everything you need in NURSING EXAMS AND TESTBANKS.Contact us, to fetch it for you in minutes if we do not have it in this shop.BUY WITHOUT DOUBT!!!!Always leave a review after purchasing any document so as to make sure our customers are 100% satisfied. **Ace Your Exams with Confidence!**

3.9

14 reseñas

5
8
4
1
3
2
2
1
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes