100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

CS7643 QUIZ 2 EXAM 2026 CERTIFIED 106 QUESTIONS WITH 100% CORRECT ANSWERS GUARANTEED EXCELLENT SCORES

Puntuación
-
Vendido
-
Páginas
15
Grado
A+
Subido en
29-09-2025
Escrito en
2025/2026

"Effect of channels on output size - CORRECT ANSWER=> It doesn't have effect on the output size: we perform the dot product for each channels and summing them up." "Effect of channels on parameters - CORRECT ANSWER=> Each channel might have its own weights with respect to the same kernel. M x (Ch x K1 x K2 + 1)" "Effect of multiple kernels (feature extraction) on output size. - CORRECT ANSWER=> The kernel size should be equal (K1 x K2) for each kernel within the layer. The output size: (H - K1 + 1) x (W - K2 + 1) x Number of Kernels" "Effect of multiple kernels (feature extraction) on parameters - CORRECT ANSWER=> Each kernel, each channel has its own set of weights, but each kernel has only 1 bias term. (K1 x K2 x Channels + 1) x M where M is the number of kernels" "What is the purpose of pooling layer? - CORRECT ANSWER=> Dimensionality reduction" "How many learned parameters does a max pooling layer have? - CORRECT ANSWER=> None" "Invariance - CORRECT ANSWER=> If the feature changes, moves or rotates slightly on the image, the output value remains the same. (For example, we classify the image of a cat regardless of where the cat is in the image)"

Mostrar más Leer menos
Institución
Graduation In Computer Science
Grado
Graduation in computer science









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Graduation in computer science
Grado
Graduation in computer science

Información del documento

Subido en
29 de septiembre de 2025
Número de páginas
15
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

CS7643 QUIZ 2 EXAM 2026
CERTIFIED 106 QUESTIONS
WITH 100% CORRECT
ANSWERS GUARANTEED
EXCELLENT SCORES
"Effect of channels on output size - CORRECT ANSWER=> It doesn't have effect on the output size:
we perform the dot product for each channels and summing them up."

"Effect of channels on parameters - CORRECT ANSWER=> Each channel might have its own
weights with respect to the same kernel.
M x (Ch x K1 x K2 + 1)"

"Effect of multiple kernels (feature extraction) on output size. - CORRECT ANSWER=> The kernel
size should be equal (K1 x K2) for each kernel within the layer. The output size:
(H - K1 + 1) x (W - K2 + 1) x Number of Kernels"

"Effect of multiple kernels (feature extraction) on parameters - CORRECT ANSWER=> Each kernel,
each channel has its own set of weights, but each kernel has only 1 bias term.
(K1 x K2 x Channels + 1) x M
where M is the number of kernels"

"What is the purpose of pooling layer? - CORRECT ANSWER=> Dimensionality reduction"

"How many learned parameters does a max pooling layer have? - CORRECT ANSWER=> None"




1|Page

, "Invariance - CORRECT ANSWER=> If the feature changes, moves or rotates slightly on the image,
the output value remains the same. (For example, we classify the image of a cat regardless of
where the cat is in the image)"

"Equivariance - CORRECT ANSWER=> If the feature translates or moves a little bit, the output
values move by the same translation and can be detected in the new location."

"Why different kernels would learn different features? - CORRECT ANSWER=> Because we
initialize them to different values, and the local minima on the weight space will different, and
so the gradient will be different --> kernels are learning different features."

"If cross-correlation is the forward pass,
then gradient w.r.t. the input is ... - CORRECT ANSWER=> CONVOLUTION between the upstream
and the kernel weights"

"If cross-correlation is the forward pass,
then gradient w.r.t the kernel is ... - CORRECT ANSWER=> CROSS-CORRELATION between the
upstream gradient and the input"

"LeNet - CORRECT ANSWER=> simple conv architecture:
Conv - MaxPool - Conv - MaxPool - FC - FC - Gaussian (=MSE loss)"

"What led to the success of deep CNN? - CORRECT ANSWER=> The large scale of data.
In 2012, ImageNet contained 1.2 billion labeled examples over 1000 categories. AlexNet was
much more successful than any other traditional and hand-engineered models."

"AlexNet key aspects - CORRECT ANSWER=> 7 layers, alternating Conv, MaxPooling,
Normalization and FC layers
- First neural network architecture that used ReLU instead of sigmoid or tanh
- Normalization layer - not common these days
- PCA based data augmentation (reduce var caused by lighting)
- Dropout - regularization
- Ensemble - 7 CNN, weighted sum of probabilities"

"VGG key aspects - CORRECT ANSWER=> >> Formed blocks of Conv-MaxPool, alternating those
>> small kernel size 3x3, stride 1 (AlexNet stride 4, kernel 11x11)
>> very large number of parameters (>100 millions)"



2|Page
$18.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ExcelHub Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
29
Miembro desde
1 año
Número de seguidores
0
Documentos
1048
Última venta
1 semana hace
Excel-Hub YOUR TRUSTED HUB FOR EXCEPTIONAL STUDY RESOURCES!

Welcome to Excel-Hub your go-to source for high-quality test banks and study materials designed to help you excel academically. I offer a comprehensive range of resources including test banks, solution manuals, and other study materials, all meticulously curated to ensure accuracy and effectiveness. They are affordable, well discounted especially the package deals and instantly available, making your learning experience seamless and efficient. Trust Excel-Hub to be your partner in academic success, providing the tools you need to achieve your educational goals. I understand the importance of high-quality, dependable materials in your academic journey. That’s why every document in my store is thoughtfully created to meet your specific needs, ensuring you have the tools to succeed with confidence. Be sure to Excel! I’d love to hear about your experience! Please leave a review of your experience with the study documents.

Lee mas Leer menos
4.0

3 reseñas

5
1
4
1
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes