100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Manhattan College MATH 103: sequences

Puntuación
-
Vendido
-
Páginas
5
Grado
A+
Subido en
29-09-2025
Escrito en
2025/2026

Manhattan College MATH 103: sequences

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
29 de septiembre de 2025
Número de páginas
5
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Sequences




In simple words sequence is a list of numbers written in definite order: a1 , a2 , … , an . a1 is first ​ ​ ​ ​




term, a2 is second term, and, in general, an is n-th term. We deal with infinite sequences, so each
​ ​




term an will have a successor an+1 .
​ ​




Notice that for every positive integer n there is a corresponding number an and so a sequence ​




can be defined as a function whose domain is the set of positive integers. But we usually write an ​




instead of the function notation f(n) for the value of the function at the number n.


The sequence {a1 , a2 , … , an } is also denoted by {an } or {an }n=1 .
​ ​ ​ ​ ​ ​




If sequence is given by formula an ​ = f (n) then we calculate an by calculating f (n). For example,





1 1
if an ​ = n+1
then ​ a3 = ​




3+1
​ = 14 . ​




Example 1. Some sequences can be defined by giving a formula for the n-th term. In the
following examples we give three descriptions of the sequence: one by using the preceding
notation, another by using the defining formula, and a third by writing out the terms of the
sequence. Notice that n doesn't have to start at 1.

a. { n2n+1 } , an = n2n+1 , { 12 , 25 , 10
3 4
n=1
​ ​ , 17 , … , n2n+1 , …}
​ ​ ​ ​ ​ ​




n n n
b. {(−1) 2n }, an = (−1) 2n , {−2, 4, −8, 16, … , (−1) 2n , …}






1 1 1 1 1 1
c. { n−2 } , an = , n > 2, {1, , , 2
, … , …}
n−2 2 3 n−2
​ ​ ​ ​ ​ ​ ​




n=3 ​ ​ ​ ​




πn ∞
d. {sin ( 4 )}n=0 ,
​ ​ an = sin ( πn
4 ), n ≥ 0, {0,
​ ​
1
2






, 1, 12 , 0, … , sin ( πn






4 ​ ), … }

Note, that there are sequences that don't have a simple defining equation.



Example 2.

a. Sequence {pn } where pn is population of USA as of January 1 in the year n.
​ ​




b. If an is n-th decimal digit of number π then {an }
​ ​ = {1, 4, 1, 5, 9, 2, 6, 5, …}.
This study source was downloaded by 100000898062787 from CourseHero.com on 09-29-2025 04:47:44 GMT -05:00


https://www.coursehero.com/file/250856122/sequencespdf/

, c. The Fibonacci sequence {f n } is defined recursively as f 1
= 1, f 2 = 1,f n = f n−1 + f n−2 , n ≥ 3.
​ ​ ​ ​ ​ ​




In other words, n-th member is sum of two previous. So, {f n } = ​




{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …}.
n n 1 n 1
Now, consider the sequence an ​ = n+1
​. Since n+1 ​ =1− n+1
then
​ 1− n+1
​ = n+1
. We see





that this difference can be made as small as we like by taking n sufficiently large. We indicate it
n
by writing limn→∞ n+1 ​ ​ = 1.



Definition. A sequence {an } has the limit L and we write limn→∞ an ​ ​ ​
= L or an → L as L →​




∞ if we can make the terms an as close to L as we like by taking n sufficiently large. If ​




limn→∞ an exists, we say the sequence converges (or is convergent). Otherwise, we say the
​ ​




sequence diverges (or is divergent).


Notice that the following definition of the limit of a sequence is very similar to the definition of a
limit of a function at infinity.


If you compare Definition with definition of a limit of a function at infinity you will see that the only
difference between limx→∞ f (x) ​
= L and limn→∞ an = L is that n is required to be an integer.
​ ​




Thus, we have the following theorem.



Theorem 1. If limx→∞ f (x) ​
= L and f (n) = an when n is an integer, then limn→∞ an = L.
​ ​ ​




In particular, since limx→∞ x1r ​ ​
= 0 when r > 0, we have that limn→∞ ​
1
nr

= 0 when r > 0.

If an becomes large as n grows we use notation limn→∞ an

= ∞. In this case sequence {an } is ​ ​ ​




divergent, but in a special way. We say that {an } diverges to ∞. ​




The Limits Laws also hold for the limits of sequences and their proof are similar.



Limit Laws for Convergent Sequences

1. If {an } and {bn } are convergent sequences and c is arbitrary constant then;
​ ​




2. limn→∞ (an + bn ) = limn→∞ an + limn→∞ bn
​ ​ ​ ​ ​ ​ ​




3. limn→∞ (an − bn ) = limn→∞ an − limn→∞ bn
​ ​ ​ ​ ​ ​ ​




4. limn→∞ c = c ​




5. limn→∞ can = c limn→∞ an
​ ​ ​ ​




This study source was downloaded by 100000898062787 from CourseHero.com on 09-29-2025 04:47:44 GMT -05:00


https://www.coursehero.com/file/250856122/sequencespdf/
$12.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
PaulMarks Rasmussen College
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1333
Miembro desde
5 año
Número de seguidores
1091
Documentos
3874
Última venta
3 semanas hace
Paul Marks Library

Providing the best guaranteed solutions for Nursing assignments.

3.8

218 reseñas

5
114
4
30
3
23
2
9
1
42

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes