MATH 255 - Probability and Statistics
Final Exam Solutions
Problem 1. [8pt] Let X1 , X2 , . . . be independent random variables that are uniformly dis-
tributed over [0, 1]. Show that the sequence of Y1 , Y2 , . . . converges with probability 1 to some
limit and identify the limit, for the case where Yn is the sampled geometric mean, given by
n
!1/n
Y
Yn = Xi
i=1
Solution:
!1/n !1/n
n
Y n
Y
lim Xi = lim exp log Xi
n→∞ n→∞
i=1 i=1
n
!!
1 Y
= lim exp log Xi
n→∞ n
i=1
n
!
1X
= lim exp log (Xi )
n→∞ n
i=1
n
!
1X
= exp lim log (Xi )
n→∞ n
i=1
= exp (E[log(Xi )])
and
Z 1
E[log(Xi )] = log(x)dx
0
= −1.
Hence, we have Yn → 1/e with probability 1.
1 09-25-2025 13:34:25 GMT -05:00
This study source was downloaded by 100000899606396 from CourseHero.com on
https://www.coursehero.com/file/206035742/Fall-22-23-Solpdf/