100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis G. Zill Complete Chapter SolutionsManual are included (Ch 1 to 9)

Puntuación
-
Vendido
-
Páginas
529
Grado
A+
Subido en
24-09-2025
Escrito en
2025/2026

A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis G. Zill Complete Chapter SolutionsManual are included (Ch 1 to 9)

Institución
A First Course In Differential Equations With Mode
Grado
A First Course in Differential Equations with Mode











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
A First Course in Differential Equations with Mode
Grado
A First Course in Differential Equations with Mode

Información del documento

Subido en
24 de septiembre de 2025
Número de páginas
529
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual are
included (Ch 1 to 9)




** All Chapters included

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024, 9780357760192; CHAPTER
#1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions ......................................................................................................................................................................... 1
Exercises 1.1 ................................................................................................................................................................................................... 1
Exercises 1.2 ................................................................................................................................................................................................. 14
Exercises 1.3 ................................................................................................................................................................................................. 22
Chapter 1 in Review Solutions .................................................................................................................................................. 30




END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx) or 2
1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ 2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear in y because of
y2. However, writing it in the form (y2 — 1)(dx/dy) + x = 0, we see that it is linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is linear in v.
However, writing it in the form (v + uv — ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
13. From y = e− x/2
we obtain yj = — 1 e− x/2
. Then 2yj + y = —e− x/2
+ e− x/2 = 0.
2




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6
14. From y = — e—20t we obtain dy/dt = 24e−20t , so that
5 5
dy + 20y = 24e−20t 6 6 −20t
+ 20 — e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—12e3x sin 2x, so that yjj
— 6yj + 13y = 0.
j
16. From y = — cos x ln(sec x + tan x) we obtain y = —1 + sin x ln(sec x + tan x) and
jj jj
y = tan x + cos x ln(sec x + tan x). Then y + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−1/2
we have
j 1/2−
(y —x)y = (y — x)[1 + (2(x + 2) ]

= y — x + 2(y —x)(x + 2)−1/2

= y — x + 2[x + 4(x + 2)1/2 —x](x + 2)−1/2

= y — x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.

An interval of definition for the solution of the differential equation is (—2, ∞) because yj is not defined at x
= —2.
18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
{x 5x /= π/2 + nπ}
or {x x /= π/10 + nπ/5}. From y j= 25 sec 25x we have
j
y = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (—π/10, π/10). An- other interval is
(π/10, 3π/10), and so on.
19. The domain of the function is {x 4 — x2 /= 0} or {x x /= —2 or x /= 2}. From y j =
2x/(4 — x2)2 we have
1 2
= 2xy2.
yj = 2x
4 — x2
An interval of definition for the solution of the differential equation is (—2, 2). Other inter- vals are (—∞,
—2) and (2, ∞).

20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Thus, the domain is {x x /= π/2 + 2nπ}. From y j= — (11 — sin x)2 −3/2 (— cos x) we have

2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another one is (5π/2,
9π/2), and so on.




2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X — 1) — ln(X — 1) = t and differentiating x

implicitly we obtain 4


— =1 2
2X — 1 dt X — 1 dt
t
2 1 dX –4 –2 2 4
— = 1
2X — 1 X—1 dt
–2


–4
dX
= —(2X — 1)(X — 1) = (X — 1)(1 — 2X).
dt
Exponentiating both sides of the implicit solution we obtain

2X — 1
= et
X —1
2X — 1 = Xet — et

(et — 1) = (et — 2)X
et 1
X= .
et — 2
Solving et — 2 = 0 we get t = ln 2. Thus, the solution is defined on (—∞, ln 2) or on (ln 2, ∞). The graph of
the solution defined on (—∞, ln 2) is dashed, and the graph of the solution defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

2 dy dy 4

—2x — 4xy + 2y =0
dx dx 2
—x2 dy — 2xy dx + y dy = 0
x
2xy dx + (x2 — y)dy = 0. –4 –2 2 4


Using the quadratic formula to solve y2 — 2x2y — 1 = 0 –2
√ √
for y, we get y = 2x2 ± 4x4 + 4 /2 = x2 ± x4 + 1 .
√ –4
Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 — x4 + 1 . Both solutions are defined on (—∞, ∞).
The graph of y1(x) is solid and the graph of y2 is dashed.




3
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
StuviaHero01 Oxford University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
75
Miembro desde
8 meses
Número de seguidores
5
Documentos
2858
Última venta
2 días hace
A+ TestBank solution

Welcome to stuviahero01 , your go-to source for high-quality test banks and study materials designed to help you excel academically. We offer a comprehensive range of resources including test banks, study guides, solution manuals, and other study materials, all meticulously curated to ensure accuracy and effectiveness. Our affordable, instantly accessible materials are complemented by excellent customer support, making your learning experience seamless and efficient. Trust stuviahero01 to be your partner in academic success, providing the tools you need to achieve your educational goals.

Lee mas Leer menos
4.1

15 reseñas

5
9
4
2
3
2
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes