100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Foundations of Mathematical Economics by Michael Carter | Complete Solutions Manual

Puntuación
-
Vendido
-
Páginas
286
Grado
A+
Subido en
22-09-2025
Escrito en
2025/2026

This document contains the full solutions manual for Foundations of Mathematical Economics by Michael Carter. It provides step-by-step solutions to all problems and exercises, offering clear guidance on applying mathematical methods to economic theory and practice. An essential resource for students aiming to strengthen their understanding of mathematical economics and prepare for exams or coursework.

Mostrar más Leer menos
Institución
Foundations Of Mathematical Economics
Grado
Foundations Of Mathematical Economics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Foundations Of Mathematical Economics
Grado
Foundations Of Mathematical Economics

Información del documento

Subido en
22 de septiembre de 2025
Número de páginas
286
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions Manual
Foundations of Mathematical Economics

Michael Carter

,
, c⃝ 2001 Michael Carter
ujujuj uj u j




Solutions for Foundations of Mathematical Economics uj uj u j u j u j All rights reserved uj uj




Chapter 1: Sets and Spaces u j u j u j u j




1.1
{1, 3, 5, 7 . . . }or {𝑛 ∈𝑁 : 𝑛 is odd }
uj uj uj uj uj uj uj u j uj uj uj u j uj u j u j uj




1.2 Every 𝑥 ∈ 𝐴 also belongs to 𝐵. Every 𝑥 ∈ u j u j u j u j u j u j u j




𝐵 also belongs to 𝐴. Hence 𝐴,𝐵 haveprecisely the same elements.
u j u j u j u j u j u j uj u j u
j u j u j u j




1.3 Examples of finite sets are uj uj u j u j




∙ the letters of the alphabet {A, B, C, . . . , Z }
u j u j u j u j u j uj u j u j u j u j u j uj




∙ the set of consumers in an economy u j u j u j u j u j u j




∙ the set of goods in an economy u j u j u j u j u j u j




∙ the set of players in a game. uj uj uj uj uj uj u
j




Examples of infinite sets are u j u j u j u j




∙ the real numbers ℜ uj uj uj




∙ the natural numbers 𝔑 u j uj u j




∙ the set of all possible colors uj uj uj uj uj




∙ the set of possible prices of copper on the world market
u j u j u j u j u j u j u j u j u j u j




∙ the set of possible temperatures of liquid water.
u j u j u j u j u j u j u j




1.4 𝑆 = {1,2,3,4, 5,6 }, 𝐸 = {2,4,6 }.
uj u j uj j
u uj uj uj uj uj uj uj u j uj j
u uj uj uj




1.5 The player set is 𝑁 = {Jenny, Chris } . Their action spaces are
u j u j u j u j u j uj j
u uj uj uj u j u j u j




𝐴𝑖 = {Rock, Scissors,Paper }
u j uj j
u uj uj uj 𝑖 = Jenny, Chris
u j uj uj




1.6 The set of players is 𝑁 = {1, 2 , .. . , 𝑛 }. The strategy space of each player is the se
u j u j u j u j u j u j u j uj uj u j uj u j u j u j u j u j u j u j u j




t of feasible outputs
uj u j u j




𝐴𝑖 = {𝑞𝑖 ∈ℜ+ : 𝑞𝑖 ≤𝑄𝑖 }
u j uj uj u j uj u j uj u j uj uj




where 𝑞𝑖 is the output of dam 𝑖.u j uju
j uju
j u j u j u j u j




1.7 The player set is 𝑁 = {1, 2, 3 }. There are 23 = 8 coalitions, namely
u j u j u j u j u j uj uj uj uj u j u j u j uj u j u j




𝒫(𝑁) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
uj u j u j uj uj uj uj uj uj uj uj uj uj uj uj




There are 210 coalitions in a ten player game.
u j u j u j u j u j u j u j u j




1.8 Assume that 𝑥 ∈(𝑆 ∪𝑇) . That is 𝑥 ∈/ 𝑆 ∪𝑇. This implies 𝑥 ∈/ 𝑆 and 𝑥 ∈/ 𝑇, or 𝑥 ∈ 𝑆𝑐 and 𝑥 ∈ 𝑇 𝑐. C
uju j ujuj ujuj uju
j j
u u j j
u j
u
𝑐
ujujuj ujuj ujuj ujuj ujuj uj uj uj ujujuj ujuj ujuj ujuj ujuj ujuj ujuj ujuj ujuj uj uj uj uj uj uj u j uj uj uj u j




onsequently, 𝑥 ∈ 𝑆𝑐 ∩ 𝑇 𝑐. Conversely, assume 𝑥 ∈ 𝑆𝑐 ∩ 𝑇 𝑐. This implies that 𝑥 ∈𝑆 𝑐 and 𝑥 ∈𝑇𝑐 . Conse
u j uj uj uj uj uj u j u j u j uj uj uj uj uj uj ujuj ujuj ujuj u j uj ujuj ujuj u j uj uj ujujuj




quently 𝑥∈/ 𝑆 and 𝑥∈/ 𝑇 and therefore ujuj j
u ujuj ujuj ujuj j
u ujuj uju j ujuj




𝑥 ∈/ 𝑆 ∪𝑇. This implies that 𝑥 ∈(𝑆 ∪𝑇)𝑐 . The other identity is proved similarly.
uj uj j
u uj uj u j uju
j u j uj j
u uj j
u uj uj u j u j u j u j u j




1.9

𝑆 =𝑁 uj uj




𝑆∈𝒞

𝑆 =∅ uj uj




𝑆∈𝒞


1

, c⃝ 2001 Michael Carter
ujujuj uj u j




Solutions for Foundations of Mathematical Economics uj uj u j u j u j All rights reserved uj uj




𝑥2
1




𝑥1
-1 0 1




-1

Figure 1.1: The relation {(𝑥, 𝑦) : 𝑥2 + 𝑦2 = 1 } u j uj u j u j uj uj uj u j u j uj u j u j uj




1.10 The sample space of a single coin toss is 𝐻{, 𝑇 . The
u j u j } set of possible outcomes inthr u j u j u j u j u j u j u j uj uj u j uj u j u j u j u j u j u
j




ee tosses is the product
u j u j u j u j




{
{𝐻, 𝑇} × {𝐻, 𝑇} × {𝐻, 𝑇}= (𝐻, 𝐻, 𝐻), (𝐻, 𝐻, 𝑇), (𝐻, 𝑇, 𝐻),
uj uj j
u uj uj j
u uj uj j
u u j uj uj uj uj uj uj uj uj uj uj



}
(𝐻, 𝑇, 𝑇 ), (𝑇, 𝐻, 𝐻), (𝑇, 𝐻, 𝑇 ), (𝑇, 𝑇, 𝐻), (𝑇, 𝑇, 𝑇 ) uj uj uj uj uj uj uj uj uj uj uj uj uj uj uj uj uj uj




A typical outcome is the sequence (𝐻, 𝐻, 𝑇) of two heads followed by a tail.
u j u j u j u j u j u j uj uj uj u j u j u j u j u j u j u j




1.11

𝑌 ∩ℜ+𝑛 = {0}
u j uj
u j
u j




where 0 = (0,0 , . . . ,0) is the production plan using no inputs and producing no outputs. To s
uj uj uj uj j uj
u uj uj uj uj uj uj uj uj uj uj uj uj u j




ee this, first note that 0 is a feasible production plan. Therefore, 0 ∈𝑌 . Also,
u j u j u j u j u j u j u j u j u j u j u j u j u j uj uj u j




0 ∈ℜ𝑛 +and therefore 0 ∈𝑌 ∩ℜ𝑛 . +
u j uj
u j
u j u j u j uj u j uj
uj




To show that there is no other feasible production plan in 𝑛 , weℜ assume
uj uj
+ the contrary. That is,
uj uj uj uj uj uj uj uj ujujujujuj uj uj uj uj uj uj uj uj




we assume there is some feasible production plan y 𝑛 0 . This
uj
+∖{ } the existence of
∈ ℜimplies uj uj uj uj uj uj uj ujujujujujujujuj ujujujujujuj ujuj ujuj uj uju j uj u j uj uj uj u




a plan producing a positive output with no inputs. This technological infeasible, so that 𝑦∈/
j uj uj uj uj uj uj uj uj uj uj uj u j u j u j uj




𝑌.
u j uj




1.12 1. Let x ∈𝑉 (𝑦 ). This implies that (𝑦,−x) ∈𝑌 . Let x′ ≥x. Then (𝑦, −x′ ) ≤
ujuj uju
j u j j
u uj ujuj uju
j uju
j uju
j uj u j uj uj ujuj uju
j uj uj uju j uju
j uj uj




(𝑦,−x) and free disposability implies that (𝑦, −x′ ) ∈𝑌 . Therefore x′ ∈𝑉 (𝑦 ).
uj u j u j u j u j uju
j u j uj uj uj uj uj u j uj uj uj




2. Again assume x ∈ 𝑉 (𝑦 ). This implies that (𝑦,−x) ∈ 𝑌 . By free disposal, (𝑦 ′ , −x) ∈
uju j uju j uju j uju j uj uj ujujujuj uju j uju j uju j uj uju j uj uj ujujujuj uju j uju j uj uj uj uj




𝑌 for every 𝑦 ′ ≤𝑦 , which implies that x ∈𝑉 (𝑦 ′ ). 𝑉 (𝑦 ′ ) ⊇𝑉 (𝑦 ).
uju j u j u j uj j
u u j u j uju
j u j uj uj uj ujuj uj uj uj uj




1.13 The domain of “<” is {1,2}= 𝑋 and the range is {2,3}⫋ 𝑌 . u j u j u j u j u j uj j
u uj u j u j u j uj u j uj uj uj uj




1.14 Figure 1.1. uj




1.15 The relation “is strictly higher than” is transitive, antisymmetric and asymmetric
u j u j u j u j u j u j u j u j u j u j




.It is not complete, reflexive or symmetric.
u
j u j u j u j u j uj u j




2
$22.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
SkillForge MY OWN RESEARCHED CONTENT
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
81
Miembro desde
1 año
Número de seguidores
12
Documentos
797
Última venta
2 días hace
PILLARS OF WISDOM

A+ GRADED EXAMS, TESTBANKS, SOLUTION MANUALS &amp; OTHER STUDY MATERIALS SHOP!!!! In my academic shop you will find A+ &amp; TOP RATED Academic study materials that Guarantees straight A's in your studies. Buy without doubt and always leave a positive review!!! Be sure to expect Top Class Customer Service!!!!

3.2

10 reseñas

5
2
4
2
3
3
2
2
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes