100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions Manual for Numerical and Analytical Methods with MATLAB (1st Edition) by William Bober

Puntuación
-
Vendido
-
Páginas
11
Grado
A+
Subido en
18-09-2025
Escrito en
2025/2026

This hands-on solutions manual provides detailed, step-by-step answers to exercises from Numerical and Analytical Methods with MATLAB (1st Edition) by William Bober. It covers essential topics including linear algebra, calculus, differential equations, Fourier analysis, numerical integration, boundary value problems, and PDEs, all demonstrated with practical MATLAB code. Ideal for students in engineering, applied mathematics, and computational sciences, this manual strengthens both the mathematical foundation and MATLAB programming skills needed to model and solve real-world technical problems. numerical methods matlab solutions, bober 1st edition answers, analytical methods in engineering, matlab solved exercises, differential equations with matlab, numerical integration examples, boundary value problem solving, fourier analysis solutions, partial differential equations matlab, linear algebra engineering problems, applied math with matlab, matlab programming in engineering, bober numerical analytical solutions, matlab textbook manual, engineering math computation guide

Mostrar más Leer menos
Institución
Engineer
Grado
Engineer

















Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Engineer
Grado
Engineer

Información del documento

Subido en
18 de septiembre de 2025
Número de páginas
11
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Chapters 2 – 14 Covered




SOLUTIONS

, SOLUTION MANUAL

NUMERICAL AND ANALYTICAL METHODS WITH

MATLAB

Table of Contents

Page

Chapter 2 1

Chapter 3 46

Chapter 4 58

Chapter 5 98

Chapter 6 107

Chapter 7 176

Chapter 8 180

Chapter 9 188

Chapter 10 214

Chapter 11 271

Chapter 12 303

Chapter 13 309

Chapter 14 339




@
@SS
eeisimiciicsiosolalatiotionn
sm

, CHAPTER 2

P2.1. Taylor series expansion of f ( x) about x = 0 is:


f ( x) f (0) f ' (0) x f ' ' (0) 2 f ' ' ' (0) 3 f 1V x 4 ...
x x
2! 3! 4!

For f ( x) cos ( x) , f (0) 1,

f ( x) sin( x), f ' (0) 0,

f ' ' ( x) cos( x), f ' ' (0) 1,

f ' ' ' ( x) sin( x), f ' ' ' (0) 0,

f 1V ( x) cos( x), f 1V (0) 1

We can see that

x x
2 4 6 8
cos( x) 1 x x ...

2! 4! 6! 8!

and that

x2
term (k) term (k 1)
2 k (2 k 1)

The following program evaluates cos( x) by both an arithmetic statement and by the above series

for - x in step of 0.1 .

% cosf.m

% This program evaluates cos(x) by both arithmetic statement and by

% series for - x in steps of 0.1

clear; clc;

xi=-pi; dx=0.1*pi; for j=1:21

x(j)=xi+(j-1)*dx;

cos_arith(j)= cos(x(j));




@ @SS
eeisim1
sm
icisolation

, sum=1.0; term=1.0; for k=1:50

den=2*k*(2*k-1);

term=-term*x(j)^2/den;

sum=sum+term;

test=abs(sum*1.0e-6); if abs(term)

<= test;

break;

end

end cos_ser(j)=sum;

nterms(j)=k;

end fo=fopen('output.dat','w');

fprintf(fo,'x cos(x) cos (x) terms in \n'); fprintf(fo,'

by arith stm by series the series \n');

fprintf(fo,'=====================================================\n');

for j=1:21

fprintf(fo,'%10.5f %10.5f %10.5f %3i \n',...

x(j),cos_arith(j),cos_ser(j),nterms(j));

fprintf(fo,'-------------------------------------------------\n');

end fclose(fo);

plot(x,cos_arith),xlabel('x'),ylabel('cos(x)'), title('cos(x) vs. x'),grid;




@ @SS
eeisim2
sm
icisolation

,Program result:

-----------------------------------------------------------------------------------------
x cos(x) cos (x) terms in
by arith stm by series the series
=====================================================
-3.14159 -1.00000 -1.00000 9
-------------------------------------------------
-2.82743 -0.95106 -0.95106 8
-------------------------------------------------
-2.51327 -0.80902 -0.80902 8
-------------------------------------------------
-2.19911 -0.58779 -0.58779 8
-------------------------------------------------
-1.88496 -0.30902 -0.30902 7
-------------------------------------------------
-1.57080 0.00000 0.00000 14
-------------------------------------------------
-1.25664 0.30902 0.30902 6
-------------------------------------------------
-0.94248 0.58779 0.58779 5
-------------------------------------------------
-0.62832 0.80902 0.80902 4
-------------------------------------------------
-0.31416 0.95106 0.95106 4
------------------------------------------------- 0.00000 1.00000
1.00000 1
------------------------------------------------- 0.31416 0.95106
0.95106 4
------------------------------------------------- 0.62832 0.80902
0.80902 4
------------------------------------------------- 0.94248 0.58779
0.58779 5
------------------------------------------------- 1.25664 0.30902
0.30902 6
------------------------------------------------- 1.57080 0.00000
0.00000 14
------------------------------------------------- 1.88496 -0.30902 -
0.30902 7
------------------------------------------------- 2.19911 -0.58779 -
0.58779 8
------------------------------------------------- 2.51327 -0.80902 -
0.80902 8
------------------------------------------------- 2.82743 -0.95106 -
0.95106 8
------------------------------------------------- 3.14159 -1.00000 -
1.00000 9
-------------------------------------------------




@ @SS
eeisim3
sm
icisolation

, cos(x) vs. x
1

0.8

0.6

0.4

0.2
cos(x)




0

-0.2

-0.4

-0.6

-0.8

-1
-4 -3 -2 -1 0 1 2 3 4
x




P2.2. Taylor series expansion of f ( x) about x = 0 is:


f ( x) f (0) f ' (0) x f ' ' (0) 2 f ' ' ' (0) 3 f 1V x 4 ...
x x
2! 3! 4!

For f ( x) sin ( x) , f (0) 0

f ( x) cos ( x), f ' (0) 1

f ' ' ( x) sin ( x), f ' ' (0) 0

f ' ' ' ( x) cos ( x), f ' ' ' (0) 1

f 1V ( x) sin ( x), f 1V (0) 0

f V ( x) cos ( x), f V (0) 1

We can see that


@ @SS
eeisim4
sm
icisolation

, x x3 x5 x 7 9
sin ( x) x ...
3! 5! 7! 9!

and that

x2
term (k) term (k 1)
2 k (2 k 1)



The following program evaluates sin ( x) by both an arithmetic statement and by the above

series for - x in step of 0.1 .



Program

% sinf.m

% This program evaluates sin(x) by both arithmetic statement and by

% series for - x in steps of 0.1

clear; clc;

xi=-pi; dx=0.1*pi; for j=1:21

x(j)=xi+(j-1)*dx;

sin_arith(j)= sin(x(j));

sum=x(j); term=x(j); for k=1:50

den=2*k*(2*k+1);

term=-term*x(j)^2/den;

sum=sum+term;

test=abs(sum*1.0e-6); if abs(term)

<= test;

break;

end




@ @SS
eeisim5
sm
icisolation

, end sin_ser(j)=sum;

nterms(j)= k;

end fo=fopen('output.dat','w');

fprintf(fo,'x sin(x) sin (x) terms in \n'); fprintf(fo,'

by arith stm by series the series \n');

fprintf(fo,'=====================================================\n');

for j=1:21

fprintf(fo,'%10.5f %10.5f %10.5f %3i \n',...

x(j),sin_arith(j),sin_ser(j),nterms(j));

fprintf(fo,'-------------------------------------------------\n');

end fclose(fo);

plot(x,sin_arith),xlabel('x'),ylabel('sin(x)'),title('sin(x)vs. x'),grid;




Program Results

---------------------------------------------------------------------------------------
x sin(x) sin (x) terms in
by arith stm by series the series
=====================================================
-3.14159 -0.00000 -0.00000 17
-------------------------------------------------
-2.82743 -0.30902 -0.30902 8
-------------------------------------------------
-2.51327 -0.58779 -0.58779 8
-------------------------------------------------
-2.19911 -0.80902 -0.80902 7
-------------------------------------------------
-1.88496 -0.95106 -0.95106 6
-------------------------------------------------
-1.57080 -1.00000 -1.00000 6
-------------------------------------------------
-1.25664 -0.95106 -0.95106 5
-------------------------------------------------
-0.94248 -0.80902 -0.80902 5
-------------------------------------------------




@ @SS
eeisim6
sm
icisolation

, -0.62832 -0.58779 -0.58779 4
-------------------------------------------------
-0.31416 -0.30902 -0.30902 3
------------------------------------------------- 0.00000 0.00000
0.00000 1
------------------------------------------------- 0.31416 0.30902
0.30902 3
------------------------------------------------- 0.62832 0.58779
0.58779 4
------------------------------------------------- 0.94248 0.80902
0.80902 5
------------------------------------------------- 1.25664 0.95106
0.95106 5
------------------------------------------------- 1.57080 1.00000
1.00000 6
------------------------------------------------- 1.88496 0.95106
0.95106 6
------------------------------------------------- 2.19911 0.80902
0.80902 7
------------------------------------------------- 2.51327 0.58779
0.58779 8
------------------------------------------------- 2.82743 0.30902
0.30902 8
------------------------------------------------- 3.14159 0.00000
0.00000 17
-------------------------------------------------




P2.3. To show that eix = cos (x) + i sin (x) and e-ix = cos (x) – i sin (x) by a Taylor series

expansions about x = 0.

f ( x) f (0) f ' (0) x f ' ' (0) 2 f ' ' ' (0) 3 f 1V x 4 ...
x x
2! 3! 4!

For f ( x) eix , f (0) 1

f ' ( x) i eix , f ' (0) i

f ' ' ( x) eix , f ' ' (0) 1

f ' ' ' ( x) i eix , f ' ' ' (0) i

f 1V ( x) eix , f 1V (0) 1

f V ( x) i eix , f V (0) i



@ @SS
eeisim7
sm
icisolation

, THOSE WERE PREVIEW PAGES

TO DOWNLOAD THE FULL PDF

CLICK ON THE L.I.N.K

ON THE NEXT PAGE
$19.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ProfHampton Liberty University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
363
Miembro desde
2 año
Número de seguidores
79
Documentos
2313
Última venta
5 horas hace

3.4

41 reseñas

5
14
4
7
3
8
2
4
1
8

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes