100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual For Ballistics: The Theory and Design of Ammunition and Guns 3rd Edition By Donald E. Carlucci, Sidney S. Jacobson All Chapters 2025 A+

Puntuación
-
Vendido
-
Páginas
549
Grado
A+
Subido en
16-09-2025
Escrito en
2025/2026

Solution Manual For Ballistics: The Theory and Design of Ammunition and Guns 3rd Edition By Donald E. Carlucci, Sidney S. Jacobson All Chapters 2025 A+

Institución
Grado













Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Grado

Información del documento

Subido en
16 de septiembre de 2025
Número de páginas
549
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Ballistics: The Theory and Design of
Ammunition and Guns 3rd Edition



Solutions Manual Part 0

Donald E. Carlucci
Sidney S. Jacobson




** Immediate Download
** Swift Response
** All Chapters included

,2.1 The Ideal Gas Law
Problem 1 - Assume we have a quantity of 10 grams of 11.1% nitrated nitrocellulose
(C6H8N2O9) and it is heated to a temperature of 1000K and changes to gas somehow
without changing chemical composition. If the process takes place in an expulsion cup
with a volume of 10 in3, assuming ideal gas behavior, what will the final pressure be in
psi?

Answer p = 292 lbf2 
 in 

Solution:

This problem is fairly straight-forward except for the units. We shall write our ideal gas
law and let the units fall out directly. The easiest form to start with is equation (IG-4)

pV = m g RT (IG-4)

Rearranging, we have

m g RT
p=
V

Here we go

1   kg  kJ  1   kgmol   ft − lbf 
(10)[g ] 
   (8.314 )    (737.6 )  (12) in (1000)[K ]
 1000   g   kgmol ⋅ K  252   kg C6 H8 N 2O9   kJ   ft 
p=
(10)[in 3 ]
 lbf 
p = 292  2 
 in 

You will notice that the units are all screwy – but that’s half the battle when working
these problems! Please note that this result is unlikely to happen. If the chemical
composition were reacted we would have to balance the reaction equation and would
have to use Dalton’s law for the partial pressures of the gases as follows. First, assuming
no air in the vessel we write the decomposition reaction.

C 6 H 8 N 2 O 9 → 4H 2 O + 5CO + N 2 + C(s )

Then for each constituent (we ignore solid carbon) we have

, N i ℜT
pi =
V

So we can write

 kgmol H 2O   kgmol C 6 H 8 N 2O 9  1  kg  
(4)

 (8.314 )
kJ 
 (1000)[K ] 1  [
 (10) g C 6 H 8 N 2 O 9 ] 1,000 
C6 H8 N 2O9

 kgmol C 6 H 8 N 2O 9   kgmol - K   252   kg C 6 H 8 N 2O 9    g C6 H8 N 2O9 
p H 2O =
[ ]
(10) in 3  1  kJ  1  ft 
 737.6   ft − lbf  12   in 

 lbf 
p H 2O = 1,168 2 
 in 

 kgmol CO   kgmol C6 H8 N 2O9   1   kg C 6 H8 N 2O9 
(5) 
 (8.314)
kJ 
 (1000)[K ] 1  [
 (10) g C6 H8 N 2O9  ] 
 kgmol C6 H8 N 2O9   kgmol - K   252   kg C6 H8 N 2O9   1,000   g C6 H8 N 2O9 
p CO =
[ ]
(10) in 3  1  kJ  1  ft 
 737.6   ft − lbf  12   in 

 lbf 
p CO = 1,460 2 
 in 

 kgmol N 2   kgmol C6 H8 N 2O9  1  kg  
(1) 
 (8.314)
kJ 
 (1000)[K ] 1  [
 (10) g C6 H8 N 2O9 ] 1,000 
C6 H8 N 2O9

p N2 =  kgmol C6 H8 N 2O9   kgmol - K   252   kg C6 H8 N 2O9   g
  C6 H8 N 2O9 
[ ]
(10) in 3  1  kJ  1  ft 
 737.6   ft − lbf  12   in 

 lbf 
p N 2 = 292  2 
 in 

Then the total pressure is

p = p H 2O + p CO + p N 2

 lbf   lbf   lbf   lbf 
p = 1,168 2  + 1,460  2  + 292  2  = 2,920  2 
 in   in   in   in 


2.2 Other Gas Laws
Problem 2 - Perform the same calculation as in problem 1 but use the Noble-Abel
equation of state and assume the covolume to be 32.0 in3/lbm

,Answer: p = 314.2 lbf2 
 in 

Solution:

This problem is again straight-forward except for those pesky units – but we’ve done this
before. We start with equation (VW-2)

p(V − cb ) = m g RT (VW-2)

Rearranging, we have

m g RT
p=
V − cb

Here we go

1   kg  kJ  1   kgmol   ft − lbf 
(10)[g ] 
   (8.314 )    (737.6 )  (12) in (1000)[K ]
 1000   g   kgmol ⋅ K  252   kg C6 H8 N 2O9  kJ   ft 
p=
  3 
[ ] 
(10) in 3 − (10)[g ] 1  kg (2.2) lbm (32.0) in  
  1000   g   kg   lbm  


 lbf 
p = 314.2  2 
 in 

So you can see that the real gas behavior is somewhat different than ideal gas behavior at
this low pressure – it makes more of a difference at the greater pressures.

Again please note that this result is unlikely to happen. If the chemical composition were
reacted we would have to balance the reaction equation and would again have to use
Dalton’s law for the partial pressures of the gases. Again, assuming no air in the vessel
we write the decomposition reaction.

C 6 H 8 N 2 O 9 → 4H 2 O + 5CO + N 2 + C(s )

Then for each constituent (again ignoring solid carbon) we have

N i ℜT
pi =
(V - cb )
So we can write

,  kgmol H 2 O   kgmol C6 H8 N 2O9   1   kg C 6 H8 N 2O9 
(4)

 (8.314)
kJ 
 (1000)[K ] 1  [
 (10) g C6 H8 N 2O9   ] 
 kgmol C6 H8 N 2O9   kgmol - K   252   kg C6 H8 N 2O9   1,000   g C 6 H8 N 2O9 
p H 2O =
  
 (10) in 3 − (10)[g ] 1   kg  (2.2) lbm  (32.0) in    1   kJ  1   ft 
3


[ ]        
   1000   g   kg   lbm    737.6   ft − lbf  12   in 

 lbf 
p H 2O = 1,257  2 
 in 

 kgmol CO   kgmol C 6 H 8 N 2O 9   1   kg C 6 H 8 N 2 O9 
(5)

 (8.314 )
kJ 
 (1000)[K ] 1  [
 (10) g C 6 H 8 N 2 O 9  ]  
 kgmol C 6 H 8 N 2O 9
  kgmol - K   252   kg C 6 H 8 N 2O 9   1,000   g C 6 H 8 N 2 O9 
p CO =
  
 (10) in 3 − (10)[g ] 1   kg  (2.2) lbm  (32.0) in    1   kJ  1   ft 
3


[ ]        
   1000   g   kg   lbm    737.6   ft − lbf  12   in 

 lbf 
p CO = 1,571 2 
 in 

 kgmol N 2   kgmol C 6 H 8 N 2O 9   1   kg C 6 H 8 N 2 O 9 
(1)

 (8.314 )
kJ 
 (1000)[K ] 1  [
 (10) g C 6 H 8 N 2O 9 ]  
 kgmol C 6 H 8 N 2O 9   kgmol - K   252   kg C 6 H 8 N 2O 9   1,000   g C 6 H 8 N 2 O 9 
p N2 =
  
 (10) in 3 − (10 )[g ] 1   kg  (2.2 ) lbm  (32.0 ) in    1   kJ  1   ft 
3


[ ]        
   1000   g   kg   lbm    737.6   ft − lbf  12   in 

 lbf 
p N 2 = 314  2 
 in 

Then the total pressure is

p = p H 2O + p CO + p N 2

 lbf   lbf   lbf   lbf 
p = 1,257  2  + 1,571 2  + 314  2  = 3,142  2 
 in   in   in   in 

Problem 3 – A hypothetical “air mortar” is to be made out of a tennis ball can using a
tennis ball as the projectile. The can has a 2-1/2” inside diameter and is 8” long. If a
tennis ball of the same diameter weighs 2 oz. and initially rests against the rear of the can,
to what air pressure must one pressurize the can to in order to achieve a 30 ft/s launch of
the tennis ball? Assume that the tennis ball can be held against this pressure until
released, that it perfectly obturates and also assume an isentropic process and ideal gas
behavior with γ = 1.4 for air.

, Solution: First we need to get some parameters in order. We start with a chamber
volume. Since the tennis ball rests against the bottom of the can, the chamber volume is
the volume of a cylinder of 2-1/2” diameter by 1-1/4” length minus the volume of half a
sphere of 2-1/2” diameter.

The empty chamber has a volume of

π
U= (2.5)2 [in 2 ](1.25)[in ] = 6.136[in 3 ]
4

π π
Vsphere = d3 = (2.5)3 [in 3 ] = 8.181[in 3 ]
6 6

Vsphere
V0 = U −
2

[ ]
V0 = (6.136 ) in 3 −
(8.181) [in 3 ] = 2.045[in 3 ]
2

There are several ways to solve this problem – the simplest one is to follow the method I
described in the notes. We can determine our fake chamber length through

V0 = Al

V0
l=
A


l=
(2.045)[in 3 ] = 0.417[in ]
π
(2.5)2 [in 2 ]
4

We shall assume muzzle exit of the projectile occurs as the equator of the tennis ball
passes through the plane of the end of the can. Then the travel of the projectile is the
length of the can less half the diameter of the tennis ball

L = (8)[in ] −
(2.5) [in ] = 6.75[in ]
2

The formula for muzzle velocity given an isentropic expansion of air was provided in the
notes as equation (IG-28)

2mg RTi l (γ −1)
Vm =
m p (1 − γ )
[(l + L)(1−γ )
− l (1−γ ) ] (IG-28)
$12.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TestsBanks University of Greenwich (London)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
867
Miembro desde
4 año
Número de seguidores
180
Documentos
2305
Última venta
1 semana hace
Accounting, Finance, Statistics, Computer Science, Nursing, Chemistry, Biology & More — A+ Test Banks, Study Guides & Solutions

Welcome to TestsBanks! Best Educational Resources for Student I offer test banks, study guides, and solution manuals for all subjects — including specialized test banks and solution manuals for business books. My materials have already supported countless students in achieving higher grades, and I want them to be the guide that makes your academic journey easier too. I’m passionate, approachable, and always focused on quality — because I believe every student deserves the chance to excel. THANKS ALOT!!

Lee mas Leer menos
4.1

132 reseñas

5
79
4
19
3
13
2
6
1
15

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes