100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Game Theory Basics 1st Edition – Lecture Summary

Puntuación
-
Vendido
-
Páginas
67
Grado
A+
Subido en
12-09-2025
Escrito en
2025/2026

Solution Manual for Game Theory Basics 1st Edition – Lecture Summary Solution Manual for Game Theory Basics 1st Edition – Lecture Summary This document is a detailed lecture summary covering foundational concepts in game theory. It includes explanations of strategic games, Nash equilibrium, dominant strategies, mixed strategies, and repeated games, with supporti..

Mostrar más Leer menos
Institución
Game Theory Basic
Grado
Game Theory Basic











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Game Theory Basic
Grado
Game Theory Basic

Información del documento

Subido en
12 de septiembre de 2025
Número de páginas
67
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUAL
b




GameTheoryBasics1stEdition
b b b b b




ByBernhardvonStengel. Chapters1-12
b b b b b b b




1

, GT




1 -NimandCombinatorialGames
b b b b




2 -CongestionGames
b b




3 -GamesinStrategicForm
b b b b




4 -GameTreeswithPerfectInformation
b b b b b




5 - Expected Utility
b b




6 -MixedEquilibrium
b b




7 - Brouwer’s Fixed-Point Theorem
b b b




8 -Zero-SumGames
b b




9 -GeometryofEquilibriainBimatrixGames
b b b b b b




10 -GameTreeswithImperfectInformation
b b b b b




11 -Bargaining
b




12 -CorrelatedEquilibrium
b b




2

,Game Theory Basics b b




Solutions to Exercises b b




© Bernhard vonStengel2022
b b b b




Solution to Exercise 1.1 b b b




(a) Let≤ be defined by (1.7). To showthat ≤ is transitive, consider x, y, zwith x ≤ y and y ≤ z. If x =
b b b b b b b b b b b b b b b b b b b b b b b b b b




y thenx ≤z,andify =z then alsox ≤z.So theonlycaseleftis x < y and y < z,which implies x
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




< z because < is transitive, and hence x ≤ z.
b GT b GT b b b b b b




Clearly, ≤isreflexivebecause x = xandtherefore x ≤x. b b b b b b b b b b b b




Toshowthat ≤is antisymmetric,considerx and ywithx
b y andy≤ x. If we h≤ad x ≠ y then x
b b T bGT b b b b b b b b b G T b b b b b b b b




< y and y < x, and by transitivity x < x which contradicts (1.38). Hence x = y, as required. This shows
b b b b b b b b b b b b b b b b b b b b b b




that ≤is a partial order.
b b b b b b




Finally,weshow(1.6),so wehavetoshow thatx < y implies x yandx ≠ y≤ an d vice versa.Let x
b b b b b b b b b b b b b b G b b b b b b G T b b b b




<y, which implies x y by (1.7). If we had x = y≤t h e n x < x, contradicting(1.38),sowealsohavex
b b b b b b b b b b b b b b b b b b b b b b b




≠y. Conversely, x yandx ≠ yimplyby(1.7)x < y or x = y where≤the second case is excluded, h ence x <
b b b b b b b b b b b b b b b b b b GT b b b b b b b b




by, as required. b b




(b) Consider a partial order and≤ assume (1.6) as a definition of <. To show that < is transitive, su ppose
b b b b G T b b b b b b b b b b b b b b b




x < y, that is, x y and x ≠ y, and y <≤ z , that is, y z and y ≠ z. Because is tra≤
b b b b nsitive, x z. If we had xb b b b b b b b b b G T b b b b b b b b b b b b b b b b b




=≤ z then x
b GT y and y≤ x and hence x = y by antisym≤metry of ,≤which contradicts x ≠ y, so
G T b G b b G T G T G b b b b b b b b b b GT b b b b b




we have x z and x ≠ z, that is,x < z by (1.6), as required.
≤ ≤
b b b b b GTb b b b b b b b b b b




Also, < is irreflexive, because x < x would by definition mean x x and x ≠ ≤x , but the latter is n ot true.
b b b b b b b b b b b b G b b b b b b b b b b b b b




Finally,weshow(1.7), sowehavetoshowthatx ≤y implies x <yorx =y andvice versa, give n that< is
b b b b b b b b b b b b b b b b b b b b b b b b b b b b




definedby(1.6). Letx ≤y. Then if x =y, we aredone, otherwisex ≠y and thenbyd efinitionx <y.
b b b b b b b b b b b b b b b b b b b b b b b b b b b




bHence,x ≤y impliesx < yorx =y. Conversely,supposex < yorx =y. Ifx < y thenx ≤ y by (1.6),
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




and if x = y then x ≤ y because ≤isreflexive. Thiscompletes theproof. b b b b b b b b b b b b b b b b b




Solution to Exercise 1.2 b b b




(a) In analysing the games of three Nim heaps where one heap has size one, we first look at some e
b b b b b b b b b b b b b b b b GT b b




xamples, and then use mathematical induction to prove what we conjecture to be the losing positio ns. A
b b b b b b b b b b b b b b b b b b




losing position is one where every move is to a winning position, becausethen theoppon entwillwin.
b b b b b b b b b b b b b b b b b b b




Thepointofthisexerciseisto formulate aprecisestatement tobeproved,and the n to prove it.
b b b b b b b b b b b b b b b b b b b b




First, if there are only two heaps recall that they are losing if and only if the heaps are of equa l size. If
b b b b b b b b b b b b b b b b b b b b b b b




they are of unequal size, then the winning move is to reduce thelarger heap so that bo th heaps have
b b b b b b b b b b b b b b b b b b b b




equal size.
b b




3

, Consider three heaps of sizes 1, m, n, where 1 m ≤n . We≤observe the following: 1, 1, m is w
b b b b b b b b b T b GT b b b b b b b




inning, by moving to 1, 1, 0. Similarly, 1, m, m is winning, by moving to 0, m, m. Next, 1, 2, 3 i
b b b b b b b b b b b b b b GT b b b b b b b b




s losing(observed earlier inthe lecture), and hence1, 2, n for n 4 is winning. 1, 3, n is winnin gforany
b b b b b b b b b b b b b b b b b b b b b b b b




n 3 by moving to 1, 3, 2. For1, 4, 5,reducinganyheap produces awinningposition,
≥ ≥
b b b b b b b b b b b b b b b b b b b




so this is losing. b b b




Thegeneralpatternforthelosingpositions thus seems tobe: 1, m, m1, foreven+numbers m. This
b b b b b b b b b b b b b b b b GT b b




includes alsothe case m = 0, which we can take as the basecase foran induction. We now
b b b b b b b b b b GT b b b b b b b b




proceed toprovethis formally. b b b b




First we show that if the positions of the form 1, m, n with m b n are lo≤sing when m is even a b b b b b b b b b b b b b b b b b b b b




ndn =m1,thenthesea +r e theonlylosingpositionsbecauseanyotherposition1, m, n withm n is
b b b b b b b b b b b b b b b b b b b b b b b




winning. Namely, i f m = n then a winning move from1, m, m is to 0, m, m, so we can as
sume m < n. If m is even then n >≤
b b b G bTb b b b b b b b b b b b b b b b b b b


m 1 (otherwise we would be in the position 1, m, m 1)
+
b b b b b b b b b b b G b b b b b b b b b b




and so the winning move is to 1, m, m 1.If mis odd then the winning move is to 1, m, m 1, th
+ +
b b b b b b b b b b b b b b b b b b b b b b b b




esame as position 1, m 1, m (this would a l s o bea winning movefrom 1,m,m so there the winnin
b b b b b b b b b b b b b b b b b b b b b b




gmove is not unique).
b
– b b
− b




Second, we showthat any movefrom1, m, m + 1 with even m is to a winning position,using as ind uctive
b b b b b b b b b b b b b b b b b b b b b b




hypothesis that 1, mJ, mJ + 1 for even mJ and mJ < m is a losing position. The move to 0, m, m + 1
b b b b b
b

b b b b
b

b
b

b b b b b b b b b b b b b




produces a winning position with counter-
b b GT b b b




moveto0, m, m. A moveto 1, mJ, m +1 for mJ < m is to a winningposition withthe counter- moveto1, mJ,
b b b b b b b b b b b b b b
b

b b b b b b b b b b b b b




mJ +1 ifmJ is evenandto1, mJ,mJ − 1ifmJ is odd.Amove to1, m, mistoa win
b
b

b b b
b

b b b b b b
b

b b b
b

b b b b b b b b b b b GT




ning position withcounter- b b b




moveto0, m, m. A move to 1, m, mJ with mJ < mis alsoto awinningposition withthecounter- move
b b b b b b b b b b
b

b
b

b b b b b b b b b b b




to 1, mJ − 1, mJ if mJ is odd, and to 1, mJ
b b b 1, mJ if mJ is even (in which case mJ 1 < m beca
b

b b
b

b
b

b b b b b b
b

b
b

b b b b b b b b




use m is even). This concludes the induction proof.
+ +
b b b b b b b b b




This result is in agreement with the theorem on Nim heap sizes represented as sums of powers of2
b b b b b b b b b b b b b b b b b b




: 1 m ∗n+i s ∗l o s i+n ∗g ifandonlyif,exceptfor20, thepowersof2makingupm and n come in pa G
b
b T b GT b b b b b b b b b b b b b b b b b b




irs.So these mustbethe samepowers of 2, except for 1 = 20, which occurs in only mor n, where wehave
b b b b b b b b b b b b b b b b b b b b b b b b b




assumed thatn isthelargernumber,so 1appearsin the representation of n: We have m
b b b b b b b b b b b b b b b b b




= 2a 2b 2c G


+ + + ·· · ···1≥,so
b

b b b b

for a > b > c > b b




+
b b b b b b




2b + 2c + + · · · + 1 = m
G
T




m is even, and, with the same a,b,c,..., n = 2a
b b 1. Then
b b b b b b b b b b b b b
G b b b b b b

b b b




∗1 + ∗ m + ∗ n ≡ ∗ 0. Thefollowing is an exampleusingthe bit representation where
b T G T bGTG b T b bG T G T G b G T b bT G T G T b G bT b b b b b b b b b b b




m =12 (which determines the bitpattern 1100, which of coursedepends on m):
b b b b b b b b b b b b b b




1 = 0001
12 = 1100
13 = 1101 b




Nim-sum 0 = 0000

(b) We use(a). Clearly, 1, 2, 3 is losing as shown in (1.2), and because the Nim-
b b b b b b b b b b b b b b b b




sumof thebinaryrepresentations 01,10,11 is 00. Examples show thatanyother position is
b b b b b b b b b b b b b b b GT G
T




winning.The three numbers are n,n 1,n+ 2. I+f n is eventhenreducing theheap of size n 2 to
b b b b b b b b b b b b b b b b b b b b



1 creates thepositionn, n 1, 1 which is losing as shown in (a). If n is odd,thenn 1 is even b




+ +
b b b b b b b b b b b b GT b b b b b b b b b b




and n 2 = n 1 1 so by the same argument, a winning move is to reducetheNimheap of s
+ +
b b b b b b b b b b b b b b b b b b b b b b




ize n to1 (whi ch onlyworks if n > 1).
b b b b b b b b b




4
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
THEPROWESS
2.0
(1)

Conoce al vendedor

Seller avatar
THEPROWESS Chamberlain College Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3
Miembro desde
3 meses
Número de seguidores
1
Documentos
594
Última venta
1 día hace
REALITIEXAMS STORE (CALIBRE)

Success is no accident. Pele said, " Success is hardwork, perseverance, learning, studying, sacrifice and most of all, love of what you're doing" . I'm here to help you navigate the ship of success in the best way possible in most fields as I possibly can. Don't fail to check out my store and recommend it to a friend. Buy with no doubt and make the cut in those exams. Don't forget to leave a review in order for other buyers to feel at ease when purchasing.

Lee mas Leer menos
2.0

1 reseñas

5
0
4
0
3
0
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes