100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

ISYE 6501 - Midterm 2 Exam 2026 Questions and Answers 100% Pass Guaranteed

Puntuación
-
Vendido
-
Páginas
28
Grado
A+
Subido en
08-09-2025
Escrito en
2025/2026

ISYE 6501 - Midterm 2 Exam 2026 Questions and Answers 100% Pass Guaranteed

Institución
ISYE6501
Grado
ISYE6501










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
ISYE6501
Grado
ISYE6501

Información del documento

Subido en
8 de septiembre de 2025
Número de páginas
28
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ISYE 6501 - Midterm 2 Exam 2026
Questions and Answers 100% Pass
Guaranteed

when might overfitting occur - Correct answer-when the # of factors is close to or

larger than the # of data points causing the model to potentially fit too closely to

random effects

Why are simple models better than complex ones - Correct answer-less data is

required; less chance of insignificant factors and easier to interpret

what is forward selection - Correct answer-we select the best new factor and see if

it's good enough (R^2, AIC, or p-value) add it to our model and fit the model with

the current set of factors. Then at the end we remove factors that are lower than a

certain threshold

what is backward elimination - Correct answer-we start with all factors and find

the worst on a supplied threshold (p = 0.15). If it is worse we remove it and start

the process over. We do that until we have the number of factors that we want and




©COPYRIGHT 2025, ALL RIGHTS RESERVE 1

,then we move the factors lower than a second threshold (p = .05) and fit the model

with all set of factors

what is stepwise regression - Correct answer-it is a combination of forward

selection and backward elimination. We can either start with all factors or no

factors and at each step we remove or add a factor. As we go through the procedure

after adding each new factor and at the end we eliminate right away factors that no

longer appear.

what type of algorithms are stepwise selection? - Correct answer-Greedy

algorithms - at each step they take one thing that looks best

what is LASSO - Correct answer-a variable selection method where the

coefficients are determined by both minimizing the squared error and the sum of

their absolute value not being over a certain threshold t

How do you choose t in LASSO - Correct answer-use the lasso approach with

different values of t and see which gives the best trade off

why do we have to scale the data for LASSO - Correct answer-if we don't, the

measure of the data will artificially affect how big the coefficients need to be




©COPYRIGHT 2025, ALL RIGHTS RESERVE 2

, What is elastic net? - Correct answer-A variable selection method that works by

minimizing the squared error and constraining the combination of absolute values

of coefficients and their squares

what is a key difference between stepwise regresson and lasso regression *** -

Correct answer-If the data is not scaled, the coefficients can have artificially

different orders of magnitude, which means they'll have unbalanced effects on the

lasso constraint.

Why doesn't Ridge Regression perform variable selection? - Correct answer-The

coefficients values are squared so they go closer to zero or regularizes them, but

the coefficient values are never equal to zero

What are the pros and cons of Greedy Algorithms (Forward selection, stepwise

elimination, stepwise regression) - Correct answer-Good for initial analysis but

often don't perform as well on other data because they fit more to random effects

than you'd like and appear to have a better fit

What are the pros and cons of LASSO, Ridge and Elastic Net - Correct answer-

They are slower but help make models that make better predictions

Which two methods does elastic net look like it combines and what are the

downsides from it? - Correct answer-Ridge Regression and LASSO.



©COPYRIGHT 2025, ALL RIGHTS RESERVE 3
$12.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
EmillyCharlotte Howard Community College
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
98
Miembro desde
1 año
Número de seguidores
5
Documentos
12005
Última venta
2 semanas hace
ALL-MAJOR.

On this page, you find all documents, package deals, and flashcards offered by seller Emilly Charlotte.

3.5

21 reseñas

5
7
4
6
3
2
2
3
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes