100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Mathematical Proofs: A Transition to Advanced Mathematics 4th Edition By Gary Chartrand, Albert D. Polimeni, Ping Zhang A+

Puntuación
-
Vendido
-
Páginas
269
Grado
A+
Subido en
06-09-2025
Escrito en
2025/2026

Solution Manual for Mathematical Proofs: A Transition to Advanced Mathematics 4th Edition By Gary Chartrand, Albert D. Polimeni, Ping Zhang

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Grado

Información del documento

Subido en
6 de septiembre de 2025
Número de páginas
269
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Albert D. Polimeni, Gary
Chartrand, Ping Zhang - Solution
Manual for Mathematical Proofs
A Transition to
Advanced Mathematics

, lOMoARcPSD|58847208




Mathematical Proofs
A Transition to
Advanced Mathematics
Fourth Edition




Gary Chartrand
Western Michigan University



Albert D. Polimeni
State University of New York at Fredonia



Ping Zhang
Western Michigan University

, lOMoARcPSD|58847208




Table of Contents
0. Communicating Mathematics
0.1 Learning Mathematics
0.2 What Others Have Said About Writing
0.3 Mathematical Writing
0.4 Using Symbols
0.5 Writing Mathematical Expressions
0.6 Common Words and Phrases in Mathematics
0.7 Some Closing Comments About Writing

1. Sets
1.1 Describing a Set
1.2 Subsets
1.3 Set Operations
1.4 Indexed Collections of Sets
1.5 Partitions of Sets
1.6 Cartesian Products of Sets Exercises for Chapter 1

2. Logic
2.1 Statements
2.2 Negations
2.3 Disjunctions and Conjunctions
2.4 Implications
2.5 More on Implications
2.6 Biconditionals
2.7 Tautologies and Contradictions
2.8 Logical Equivalence
2.9 Some Fundamental Properties of Logical Equivalence
2.10 Quantified Statements
2.11 Characterizations Exercises for Chapter 2

3. Direct Proof and Proof by Contrapositive
3.1 Trivial and Vacuous Proofs
3.2 Direct Proofs
3.3 Proof by Contrapositive
3.4 Proof by Cases
3.5 Proof Evaluations
Exercises for Chapter 3

4. More on Direct Proof and Proof by Contrapositive
4.1 Proofs Involving Divisibility of Integers
4.2 Proofs Involving Congruence of Integers
4.3 Proofs Involving Real Numbers
4.4 Proofs Involving Sets
4.5 Fundamental Properties of Set Operations
4.6 Proofs Involving Cartesian Products of Sets Exercises for Chapter 4

5. Existence and Proof by Contradiction
5.1 Counterexamples
5.2 Proof by Contradiction
iv


5.3 A Review of Three Proof Techniques

, lOMoARcPSD|58847208




5.4 Existence Proofs
5.5 Disproving Existence Statements Exercises for Chapter 5

6. Mathematical Induction
6.1 The Principle of Mathematical Induction
6.2 A More General Principle of Mathematical Induction
6.3 The Strong Principle of Mathematical Induction
6.4 Proof by Minimum Counterexample Exercises for Chapter 6

7. Reviewing Proof Techniques
7.1 Reviewing Direct Proof and Proof by Contrapositive
7.2 Reviewing Proof by Contradiction and Existence Proofs
7.3 Reviewing Induction Proofs
7.4 Reviewing Evaluations of Proposed Proofs Exercises for Chapter 7

8. Prove or Disprove
8.1 Conjectures in Mathematics
8.2 Revisiting Quantified Statements
8.3 Testing Statements Exercises for Chapter 8

9. Equivalence Relations
9.1 Relations
9.2 Properties of Relations
9.3 Equivalence Relations
9.4 Properties of Equivalence Classes
9.5 Congruence Modulo n
9.6 The Integers Modulo n Exercises for Chapter 9

10. Functions
10.1 The Definition of Function
10.2 One-to-one and Onto Functions
10.3 Bijective Functions
10.4 Composition of Functions
10.5 Inverse Functions
Exercises for Chapter 10

11. Cardinalities of Sets
11.1 Numerically Equivalent Sets
11.2 Denumerable Sets
11.3 Uncountable Sets
11.4 Comparing Cardinalities of Sets
11.5 The Schroder-Bernstein Theorem¨ Exercises for Chapter 11

12. Proofs in Number Theory
12.1 Divisibility Properties of Integers
12.2 The Division Algorithm
12.3 Greatest Common Divisors
v


12.4 The Euclidean Algorithm
12.5 Relatively Prime Integers
12.6 The Fundamental Theorem of Arithmetic
12.7 Concepts Involving Sums of Divisors Exercises for Chapter 12
$11.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
PrimeTestBanks Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
72
Miembro desde
1 año
Número de seguidores
15
Documentos
1923
Última venta
4 días hace
"Trusted Study Guides for Success"

PrimeTest Resources delivers authentic and high-quality test banks and solution manuals for students worldwide. From Accounting and Finance to Psychology and Economics, our resources ensure clarity, accuracy, and better exam preparation. With PrimeTest, students gain the confidence and tools needed to achieve outstanding results in their studies.

4.9

45 reseñas

5
42
4
2
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes