100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

DP-900 QUESTIONS with Correct Verified Solutions

Puntuación
-
Vendido
-
Páginas
35
Grado
A+
Subido en
06-09-2025
Escrito en
2025/2026

DP-900 QUESTIONS with Correct Verified Solutions

Institución
DP-900
Grado
DP-900











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
DP-900
Grado
DP-900

Información del documento

Subido en
6 de septiembre de 2025
Número de páginas
35
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

DP-900 QUESTIONS with Correct Verified
Solutions
What three main types of workload can be found in a typical modern data warehouse?

- Streaming Data

- Batch Data

- Relational Data

A ____________________ is a continuous flow of information, where continuous does not

necessarily mean regular or constant.

data stream

__________________________ focuses on moving and transforming data at rest.

Batch processing

This data is usually well organized and easy to understand. Data stored in relational

databases is an example, where table rows and columns represent entities and their

attributes.

Structured Data

This data usually does not come from relational stores, since even if it could have some sort

of internal organization, it is not mandatory. Good examples are XML and JSON files.

Semi-structured Data

Data with no explicit data model falls in this category. Good examples include binary file

formats (such as PDF, Word, MP3, and MP4), emails, and tweets.

,Unstructured Data

What type of analysis answers the question "What happened?"

Descriptive Analysis

What type of analysis answers the question "Why did it happen?"

Diagnostic Analysis

What type of analysis answers the question "What will happen?"

Predictive Analysis

What type of analysis answers the question "How can we make it happen?"

Prescriptive Analysis

The two main kinds of workloads are ______________ and _________________.

extract-transform-load (ETL)

extract-load-transform (ELT)

______ is a traditional approach and has established best practices. It is more commonly

found in on-premises environments since it was around before cloud platforms. It is a

process that involves a lot o data movement, which is something you want to avoid on the

cloud if possible due to its resource-intensive nature.

ETL

________ seems similar to ETL at first glance but is better suited to big data scenarios since

it leverages the scalability and flexibility of MPP engines like Azure Synapse Analytics,

Azure Databricks, or Azure HDInsight.

,ELT

_______________ is a cloud service that lets you implement, manage, and monitor a cluster

for Hadoop, Spark, HBase, Kafka, Store, Hive LLAP, and ML Service in an easy and

effective way.

Azure HDInsight

_____________ is a cloud service from the creators of Apache Spark, combined with a

great integration with the Azure platform.

Azure Databricks

____________ is the new name for Azure SQL Data Warehouse, but it extends it in many

ways. It aims to be the comprehensive analytics platform, from data ingestion to

presentation, bringing together one-click data exploration, robust pipelines, enterprise-

grade database service, and report authoring.

Azure Synapse Analytics

A ___________ displays attribute members on rows and measures on columns. A simple

____________ is generally easy for users to understand, but it can quickly become difficult

to read as the number of rows and columns increases.

table

A _____________ is a more sophisticated table. It allows for attributes also on columns and

can auto-calculate subtotals.

matrix

, Objects in which things about data should be captured and stored are called:

____________.



A. tables

B. entities

C. rows

D. columns

B. entities

You need to process data that is generated continuously and near real-time responses are

required. You should use _________.



A. batch processing

B. scheduled data processing

C. buffering and processing

D. streaming data processing

D. streaming data processing

A. Extract, Transform, Load (ETL)

B. Extract, Load, Transform (ELT)



1. Optimize data privacy.

2. Provide support for Azure Data Lake.
$13.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
QUINTER New York College Of Dentistry
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
348
Miembro desde
2 año
Número de seguidores
104
Documentos
38635
Última venta
3 días hace

3.5

58 reseñas

5
26
4
8
3
7
2
1
1
16

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes