EDEXCEL A LEVEL FURTHER MATHS CORE
PURE||VERIFIED ANSWERS||COMPLETE GUIDE
Σ1 = ? (sigma 1)
ANS: n
Σ r = ? (sigma r from 1 to n)
ANS: 1/2n(n+1)
If the sum doesn't start from 1, sigma f(r) from k to n
ANS: sum/sigma from 1 to n - sum/sigma from 1 to k-1
Rearrange Σkf(r) from 1 to n
ANS: kΣf(r) from 1 to n
Σr^2 (sigma r squared)
ANS: 1/6n(n+1)(2n+1)
Σr^3 (sigma r cubed)
ANS: 1/4 n^2 (n+1)^2
rules for polynomials: ax^2 + bx + c = 0
roots α and β
,α + β = -b/a
αβ = c/a
rules for polynomials: ax^3 + bx^2 + cx + d = 0
roots α,β,γ
α + β + γ = -b/a
αβ+ αγ + βγ = c/a
αβγ = -d/a
rules for polynomials: ax^4 + bx^3 + cx^2 + dx + e = 0
roots α, β, γ, δ
α+β+γ+δ = -b/a
αβ+ αγ+ αδ+ βγ+ βδ+ γδ = c/a
αβγ + αβδ + αγδ + βγδ = -d/a
αβγδ = e/a
1/α + 1/β =
ANS: α+β/αβ
1/α + 1/β + 1/γ =
ANS: (αβ+αγ+βγ)/αβγ
1/α + 1/β + 1/γ + 1/δ =
ANS: (αβγ + αγδ + βγδ + αβδ) / αβγδ
, α^n x β^n =
ANS: (αβ) ^n
α^2 + β^2
ANS: (α+β)^2 - 2αβ
α^2 + β^2 + γ^2
ANS: (α+β+γ)^2 - 2(αβ+βγ+αγ)
α^2 + β^2 + γ^2 + δ^2
ANS: (α+β+γ+δ)^2 - 2(αβ+αγ+αδ+βδ+βγ+γδ)
α^3 + β^3
ANS: (α+β)^3 - 3αβ(α+β)
α^3 + β^3 + γ^3
ANS: (α+β+γ)^3 - 3(αβ+βγ+γα)(α+β+γ) +3αβγ
volume of revolution when y=f(x) is rotated around the x axis
ANS: volume = π∫y^2 dx
(pi integral of y squared dx)
PURE||VERIFIED ANSWERS||COMPLETE GUIDE
Σ1 = ? (sigma 1)
ANS: n
Σ r = ? (sigma r from 1 to n)
ANS: 1/2n(n+1)
If the sum doesn't start from 1, sigma f(r) from k to n
ANS: sum/sigma from 1 to n - sum/sigma from 1 to k-1
Rearrange Σkf(r) from 1 to n
ANS: kΣf(r) from 1 to n
Σr^2 (sigma r squared)
ANS: 1/6n(n+1)(2n+1)
Σr^3 (sigma r cubed)
ANS: 1/4 n^2 (n+1)^2
rules for polynomials: ax^2 + bx + c = 0
roots α and β
,α + β = -b/a
αβ = c/a
rules for polynomials: ax^3 + bx^2 + cx + d = 0
roots α,β,γ
α + β + γ = -b/a
αβ+ αγ + βγ = c/a
αβγ = -d/a
rules for polynomials: ax^4 + bx^3 + cx^2 + dx + e = 0
roots α, β, γ, δ
α+β+γ+δ = -b/a
αβ+ αγ+ αδ+ βγ+ βδ+ γδ = c/a
αβγ + αβδ + αγδ + βγδ = -d/a
αβγδ = e/a
1/α + 1/β =
ANS: α+β/αβ
1/α + 1/β + 1/γ =
ANS: (αβ+αγ+βγ)/αβγ
1/α + 1/β + 1/γ + 1/δ =
ANS: (αβγ + αγδ + βγδ + αβδ) / αβγδ
, α^n x β^n =
ANS: (αβ) ^n
α^2 + β^2
ANS: (α+β)^2 - 2αβ
α^2 + β^2 + γ^2
ANS: (α+β+γ)^2 - 2(αβ+βγ+αγ)
α^2 + β^2 + γ^2 + δ^2
ANS: (α+β+γ+δ)^2 - 2(αβ+αγ+αδ+βδ+βγ+γδ)
α^3 + β^3
ANS: (α+β)^3 - 3αβ(α+β)
α^3 + β^3 + γ^3
ANS: (α+β+γ)^3 - 3(αβ+βγ+γα)(α+β+γ) +3αβγ
volume of revolution when y=f(x) is rotated around the x axis
ANS: volume = π∫y^2 dx
(pi integral of y squared dx)