100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Summaries made for first year stats & data science 188.

Puntuación
-
Vendido
1
Páginas
63
Subido en
05-09-2025
Escrito en
2024/2025

Summaries for BAccounting student for the module Statistics & Data Science 188.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
5 de septiembre de 2025
Número de páginas
63
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Jess Rolfe
stats & data science 188
S2 summaries 2024


chapter 7
sampling distributions


sampling distributions

what is a sampling distribution ?
• A sampling distribution is a distribution of all the possible values of a sample statistic for
a given sample size selected from a population

For example
Suppose you sample 50 students from university regarding their mean GPA. If you obtained
many different samples of size 50 , you will compute a different mean for each sample.
We are interested in the distribution of all potential means GPAs we might calculate for
samples of 50 students.
Sampling distributions



Sampling Sampling
distributions of the distributions of the
mean proportion




developing a sampling distribution

• A sampling distribution is the distribution of the results that would occur had one
selected all possible samples.
• In practice , one selects a single random sample of a predetermined size from the
population. The single result obtained is just one of the results in the sampling
distribution.

1. sampling distribution of the mean

• The sampling distribution of the mean is the distribution of all possible sample means
calculated from all possible samples of a given size.


The unbiased property of the sample mean

• The sample mean is unbiased because the mean of all the possible sample means (of
a given sample size, n) is equal to the population mean , µ.




1

,standard error of the mean (SE)

• Different samples of the same size from the same population will yield different sample
means
• A measure of the variability in the mean from sample to sample is given by the
standard error of the mean :
(this assumes that sampling is with replacement or sampling is without replacement from
an infinite population)




note : the standard error of the mean decreases ↓ as the sample size increases ↑


If the population is normal / normally distributed

• If the population is normal with mean µ and standard deviation σ , the sampling
distribution of x-bar is also normally distributed with :




then use the Z-value for sampling distribution of the mean (x-bar) :




sampling distribution properties :




2

,Determine an interval including a fixed proportion of the sample means

• Sometimes one needs to find the interval that contains a specific proportion of the
sample means. To do so , determine a distance below and above the population
mean containing a specific area of the normal curve.

we arrange the formula to find x-bar :




We can now determine the UPPER and LOWER limit for which we think x-bar will fall
between. We do this by calculating X-bar lower and X-bar upper intervals.

e.g.




Sample mean sampling distribution : if the population is not normal

Central Limit Theorem :

• Even if the population is not normal
• … sample means from the population will be approximately normal as long as the
sample size is large enough




How large is large enough ?
- for most distributions , n > 30 will give a sampling distribution that is nearly normal
- For fairly symmetric distributions , n > 15 is large enough
- For a normal population distribution , the sampling distribution of the mean is always
normally distributed
3

, always remember :
3 steps




P → X → Z values


2. sampling distribution of the proportion

Population proportion

π = the proportion of the population having some characteristic

- sample proportion (p) provides an estimate of π




• 0 <= p <= 0
• X - binomial (n,π)
• p is approximately distributed as a normal distribution when n is large
(assuming sampling with replacement from a finite population or without replacement
from an infinite population)

sampling distribution of p

Approximated by a normal distribution if :
- nπ >= 5
- AND n(1-π) >= 5

where
µp = π
and




Z-value for proportions :
Standardise p to a Z-value with the formula




4
$15.26
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
jessicarolfe2005

Conoce al vendedor

Seller avatar
jessicarolfe2005 Stellenbosch University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
3 meses
Número de seguidores
0
Documentos
5
Última venta
3 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes