100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Student Solutions Manual – Calculus for Business, Economics, and the Social & Life Sciences (10th Edition, Brief | Hoffman, Smith & Bradley) | Latest 2025 Update

Puntuación
-
Vendido
-
Páginas
999
Grado
A+
Subido en
04-09-2025
Escrito en
2025/2026

Get the latest 2025 updated Student Solutions Manual to accompany Calculus for Business, Economics, and the Social and Life Sciences, 10th Edition, Brief by Laurence D. Hoffman, Smith Barney, and Gerald L. Bradley. This manual provides step-by-step, accurate solutions to selected problems from the textbook, helping students strengthen their understanding of calculus in real-world business, economics, and life science contexts. Why this updated solutions manual is the best choice: Latest 2025 revision – aligned with the 10th Edition, Brief version Detailed solutions with clear steps Covers core calculus concepts applied to business & economics Perfect for homework, quizzes, and exam prep Instant digital access – study anytime, anywhere Boosts problem-solving skills and exam confidence This manual is the perfect companion for students who want to save time, master concepts, and succeed in business and economics calculus courses.

Mostrar más Leer menos
Institución
Calculus For Business, Economics
Grado
Calculus for Business, Economics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Calculus for Business, Economics
Grado
Calculus for Business, Economics

Información del documento

Subido en
4 de septiembre de 2025
Número de páginas
999
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Student Solutions Manual
to accompany

Calculus for Business,
Economics, and the
Social and Life Sciences
Tenth Edition, Brief

Laurence D. Hoffman
Smith Barney

Gerald L. Bradley
Claremon McKenna College




Prepared by
Devilyna Nichols
Purdue University

,CONTENTS




Chapter 1
i Functions, Graphs, and Limits i i i 1
1.1 Functions 1
1.2 The Graph of a Function
i 6
i i i


1.3 Linear Functions
i 14
1.4 Functional Models 19 i


1.5 Limits 26
1.6 One-Sided Limits and Continuity
i i i 30
Checkup for Chapter 1
i 33 i i

Review Problems i 36


Chapter 2
i ii i Differentiation: Basic Concepts 43 i i


2.1 The Derivative
i 43
2.2 Techniques of Differentiation i 52 i

2.3 Product and Quotient Rules; Higher-Order Derivatives
i i i i i 57
2.4 The Chain Rule
i 64i


2.5 Marginal Analysis; Approximations Using Increments
i i i i 72
2.6 Implicit Differentiation and Related Rates
i 75 i i i


Checkup for Chapter 2
i 82 i i

Review Problems i 84


Chapter 3
i ii i Additional Applications of the Derivative
i 93 i i i


3.1 Increasing and Decreasing Functions; Relative Extrema
i i i i i 93
3.2 Concavity and Points of Inflection
i 103 i i i


3.3 Curve Sketching
i 114
3.4 Optimization 124
3.5 Additional Applied Optimization
i 132 i

Checkup for Chapter 3
i 141 i i


Review Problems i 148


Chapter 4
i ii i Exponential and Logarithmic Functions 159
i i i

4.1 Exponential Functions 159 i


4.2 Logarithmic Functions 165 i


4.3 Differentiation of Logarithmic and Exponential Functionsi i i i i 173
4.4 Additional Exponential Models
i 182 i


Checkup for Chapter 4
i 199 i i


Review Problems i 205
iii

,iv Contents




Chapter 5
i ii i Integration 219
5.1 Antidifferentiation; the Indefinite Integral 219 i i i

5.2 Integration by Substitution i 226 i


5.3 The Definite Integral and the Fundamental Theorem of Calculus
i i 233 i i i i i i

5.4 Applying Definite Integration: Area Between Curves and Average Value
i i i i i i i i 238
5.5 Additional Applications to Business and Economics
i 245 i i i i

5.6 Additional Applications to the Life and Social Sciences
i 252 i i i i i i


Checkup for Chapter 5
i 259 i i


Review Problems
i 262

Chapter 6 Additional Topics in Integration
i ii i 273 i i i


6.1 Integration by Parts; Integral Tables 273
i i i i


6.2 Introduction to Differential Equations 284 i i i


6.3 Improper Integrals; Continuous Probability
i 292 i i

6.4 Numerical Integration 300 i


Checkup for Chapter 6 i 307 i i


Review Problems i 312

Chapter 7 Calculus of Several Variables
i ii i i 325 i i


7.1 Functions of Several Variables i 325 i i


7.2 Partial Derivatives
i 329
7.3 Optimizing Functions of Two Variables 336
i i i i

7.4 The Method of Least Squares
i 346 i i i


7.5 Constrained Optimization: The Method of Lagrange Multipliers
i i i i i i 353
7.6 Double Integrals i 362
Checkup for Chapter 7 i 371 i i


Review Problems i 375

, Chapter 1 i




Functions, Graphs, and Limits i i i




9. 1
1.1 Functions f (t ) = (2t − 1)−3/2 = i i i i i

ii i ii i
,
( 2t − 1)3 i i


f(x) = 3x + 5, 1
1. i i i i
f(1) =

i =1, i i

f (0) = 3(0) + 5 = 5
i i i i i i i [ 2(1) − 1]3 i i

f(−1) = 3(−1) + 5 = 2
i i i i i i i
f (5) = √ 1
i = 1 =1 , i i
i i ii




f (2) = 3(2) + 5 = 11 i i i [ 2(5) − √ i i
i i i i
[ 9]3 27
1]3 1 1 i

1
f (13) = √
i = √ = i . i i i

[ 2(13) − 1]3 [ 25]3 125 i i i
i
i


3. f(x) = 3x2 + 5x − 2,
i i i i i i 11. f(x) = x − |x − 2|,
i
i i i i i i



f (0) = 3(0) + 5(0) − 2 = −2,
i i i
2
i i i i i i
f (1) = 1 − |1 − 2|= 1 − | − 1|= 1 − 1 = 0,f (2)
i i i i i i i i i i i i i i i i i




f (−2) = 3(−2)2 + 5(−2) − 2 = 0,
i i i i i i i i i
= 2 − |2 − 2|= 2 − |0|= 2,
i i i i i i i i i i



f (3) = 3 − |3 − 2|= 3 − |1|= 3 − 1 = 2.
f (1) = 3(1)2 + 5(1) − 2 = 6.
i i i i i i i i i i i i i i i
i i i i i i i i i

13. −2x + 4 if x ≤ 1
h(x) =
i i iiii i i i


x2 + 1 if x > 1 i i i i i


1 h(3) = (3) + 1 = 10
2
i i i i i i


5. g(x) = x + i i i , h(1) = −2(1) + 4 = 2 i i i i i i
x h(0) = −2(0) + 4 = 4
1 i i i i i i



g(−1) = −1+ = −2, i i i h(−3) = −2(−3) + 4 = 10
−1
i i i i i i i i

1
i
x
g(1) = 1 + = 2, 15. g(x) .
=
i
i i i i
1 i 1+ x 2 i i

g(2) = 2 1 5. i i Since 1+ x2 /= 0 for any real number, the domain is i i i i i i i i i i i i

+ = i i
2 2 i
the set of all real numbers. i i i i i



17. f (t) = 1− t .
ii i i i i i


, Since negative numbers do not have real square
h(t) = t2 + 2t + 4,
i i i i i i i
7. i i
i
i i i
roots, the domain is all real numbers such that

i i i i i i i i i
, 1 —t ≥ 0, or t ≤ 1. Therefore, the domain is not the
h(2) = i 3, i 22 i + i2(2) i+ i4 i= i2 i i i i i i i i


, set of all real numbers.
i i i i i

2h(0) = 0
, √ x2 + 5
h(−4) = (−4)2 + 2(−4) + 4 = 2 3 i
i
i i i 19. g(x) = .
+ 2(0) + 4 = 2,
i i i

x +2 i i



1
$16.29
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
smartstudysource Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
87
Miembro desde
4 meses
Número de seguidores
4
Documentos
993
Última venta
1 día hace
The academic vault-a secure source of valuable study materials

your go to go source for high quality study materials and exam resources. Fast, reliable, and designed to help you succeed.

3.6

8 reseñas

5
4
4
1
3
1
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes