100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary AP Calculus Cheat Sheet--Time Saving

Puntuación
-
Vendido
-
Páginas
10
Subido en
27-08-2025
Escrito en
2025/2026

1. Algebra Essentials Exponents & Radicals: Laws of exponents, roots, negative powers, and fractional exponents. Logarithms: Properties of logs (product, quotient, power rules). Absolute Value: Key rules and inequalities. Quadratics: Factorization, completing the square, and quadratic formula. 2. Functions & Graphs Domains: Restrictions from denominators, logs, roots, and trig functions. Parity: Even, odd, or neither. Intercepts: Solve for x- and y-intercepts. Asymptotes/Holes: Vertical, horizontal, oblique, and removable discontinuities. Monotonicity & Extrema: First derivative test for increasing/decreasing intervals, max/min. Convexity/Inflection: Second derivative test. 3. Trigonometry Unit Circle: Exact values of sine, cosine, tangent. Identities: Pythagorean, reciprocal, quotient identities. Angle sum/difference, double/half angle, co-function, even-odd properties. Product-to-sum and sum-to-product formulas. Laws: Law of Sines, Law of Cosines. Hyperbolic Functions: sinh, cosh, tanh definitions. 4. Limits & Continuity Definitions: Epsilon-delta, sequences. Techniques: Squeeze theorem, root and e-log tricks, L’Hôpital’s Rule. Important Limits: e, log, trig basics. Continuity: Pointwise, uniform, Lipschitz continuity. Theorems: Intermediate and Extreme Value Theorems. 5. Derivatives Definition: Limit of difference quotient. Rules: Power, product, quotient, chain, inverse. Common Derivatives: Polynomial, exponential, log, trig, inverse trig, hyperbolic functions. Applications: Tangent lines, differentiability, inverse function theorem, Mean Value Theorem. 6. Integrals Definition: Riemann sums and Riemann-integrability. Properties: Linearity, additivity, inequalities. Basic Integrals: Power rule, exponential, log, trig, hyperbolic. Techniques: u-Substitution Integration by Parts (LIATE order) Trig Identities & Substitution Partial Fractions Improper Integrals: Infinite limits, discontinuities, convergence tests. Fundamental Theorem of Calculus: Link between derivative and integral. 7. Sequences & Series Sequences: Definitions, convergence, boundedness, monotonicity, Cauchy sequences. Series: Convergence tests (divergence, p-test, ratio, root, comparison, alternating series, integral test). Power Series: Definition, radius of convergence, differentiation. Taylor/Maclaurin Series: exp, sin, cos, arctan, ln expansions. Geometric Series: Formula and convergence. 8. Applications Arc Length: Formula for parametric curves. Numerical Methods: Bisection Method: Root finding via interval halving. Newton’s Method: Iterative root approximation. This cheat sheet is a comprehensive AP Calculus reference covering algebra, functions, trigonometry, limits, derivatives, integrals, sequences, and series, along with key strategies and theorems for problem-solving

Mostrar más Leer menos
Institución
Calculus
Grado
Calculus









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Calculus
Grado
Calculus

Información del documento

Subido en
27 de agosto de 2025
Número de páginas
10
Escrito en
2025/2026
Tipo
Resumen

Temas

Vista previa del contenido

1 Algebra (vii) |xn | = |x|n 2 Functions · Horizontal aysmptote (if domain is unlimited at
x |x| ±∞) if:
(viii) =
1.1 Exponential Properties y |y| 2.1 Domain limx→+∞ f (x) = k (right y = k)
(ix) |a − b| = b − a, if a ≤ b limx→−∞ f (x) = h (left y = h).
(i) x0 = 1 · Fractions denominator 6= 0.
(x) |a + b| ≤ |a| + |b| · Oblique aysmptote (if domain is unlimited at
(ii) xn xm = xn+m
(xi) |a| − |b| ≤ |a − b| · Logarithms if the base is a number, the argument ±∞) if:
xn 1
(iii) xm
= xn−m = xm−n
must be > 0, if the base depends on a variable, the f (x)
limx→+∞ x = m ∧ limx→+∞ [f (x) − mx] = q
(iv) (xn )m = xnm base must be > 0∧ 6= 1. (right at y = mx + q)
1.5 Factorization
 n f (x)
x xn · Roots with even index, the argument must be limx→−∞ x = m ∧ limx→−∞ [f (x) − mx] = q
(v) y
= yn (i) x2 − a2 = (x + a)(x − a) ≥ 0, for roots with odd index the domain is R. (left at y = mx + q).
(vi) x−n = 1 (ii) x2 + 2ax + a2 = (x + a)2
xn · Arccos/Arcsin the agrument must be ∈ [−1, 1].
(vii) 1
= xn (iii) x − 2ax + a2 = (x − a)2
2
2.6 Monotonicity
x−n For other trig functions we use trig properties to
 −n (iv) x2 + (a + b)x + ab = (x + a)(x + b) change them to cos and sin.
x y n yn A funciton f is:
(viii) y
= x = xn (v) x3 + 3ax2 + 3a2 x + a3 = (x + a)3
 1 n √ · Exponential base > 0. · Monotonically increasing if:
(ix) x
n
m = xm
1
= (xn ) m = m
xn (vi) x3 − 3ax2 + 3a2 x − a3 = (x − a)3
∀x, y : x ≤ y ⇒ f (x) ≤ f (y)
(vii) x3 + a3 = (x + a)(x2 − ax + a2 )
2.2 Parity · Monotonically decreasing if:
(viii) x3 − a3 = (x − a)(x2 + ax + a2 )
1.2 Logarithm Properties ∀x, y : x ≤ y ⇒ f (x) ≥ f (y)
(ix) x2n − a2n = (xn − an )(xn + an ) We consider the partiy of the function only if
(i) logn (0) = Undefined Dom(f ) is mirrored on the origin: · Strictly increasing if:
(ii) logn (1) = 0 (Dom(f ) = [−2, 2] ∨ (−∞, ∞) ∨ (−∞, −1] ∪ [1, ∞]). ∀x, y : x < y ⇒ f (x) < f (y)
1.6 Complete The Square
(iii) logn (n) = 1 · Strictly decreasing if:
ax2 + bx + c = 0 ⇒ a(x + d)2 + e = 0 · Even function (with respect to the y axis) if:
∀x, y : x < y ⇒ f (x) > f (y)
(iv) logn (nx ) = x f (−x) = f (x).
b
(v) nlogn (x) = x · d= 2a · Odd function (with respect to the origin) if: 2.7 Max, Min
(vi) logn (xr ) = r logn (x) 6= logrn (x) = (logn (x))r 2 f (−x) = −f (x).
b
(vii) logn (xy) = logn (x) + logn (y)
· e=c− 4a Calculate f 0 (x) = 0, then all the solutions xi are
  · In every other case the function is neither even nor our candidates, where for a small  > 0:
(viii) logn x y
= logn (x) − logn (y) 1.7 Quadratic Formula
odd.
· Max if: f 0 (xi − ) > 0 ∧ f 0 (xi + ) < 0.
(ix) − logn (x) = logn x1
 √
ax2 + bx + c = 0 ⇒ x=
−b± b2 −4ac
2.3 Axis Intercept · Min if: f 0 (xi − ) < 0 ∧ f 0 (xi + ) > 0.
log(x) 2a
(x) log(n)
= logn (x) · Inflection if (use sign table):
· If b2 − 4ac > 0 ⇒ Two real unequal solutions. · X intercept can be many; is calculated by solving
g(x) f 0 (xi − ) < 0 ∧ f 0 (xi + ) < 0, or
f (x) = 0. If f (x) = h(x) we solve just g(x) = 0. f 0 (xi − ) > 0 ∧ f 0 (xi + ) > 0
1.3 Radical Properties · If b2 − 4ac = 0 ⇒ Two repeated real solutions. The points are then (xi , 0).

n
1 If f 0 (x) > 0, then f is strictly increasing.
(i) x=x n
· If b2 − 4ac < 0 ⇒ Two complex solutions.
√ √ √ · Y intercept can be just one; is calculated by If f 0 (x) < 0, then f is strictly decreasing.
(ii) n xy = n x n y setting x = 0, the point is then (0, f (0)). If If f 0 (x) = 0 f is constant.
p √ √ x=0∈ / Dom(f ) there is no Y intercept.
(iii) m n x = mn x

q
(iv) n x
nx
= n

2.8 Convexity
y y
√ 2.4 Sign · Convex (∪) if: f 00 (x) > 0
n n
(v) x = x, if n is odd
√ The sign can only change when there is a x inter- · Concave (∩) if: f 00 (x) < 0
(vi) n xn = |x|, if n is even cept (if the function is continuous), thus if we solve
f (x) ≥ 0 we get both the X intercepts and where
2.9 Inflection Points
1.4 Absolute Value Properties the function is positive.
( Calculate f 00 (x) = 0, then all the solutions xi are
x if x ≥ 0 our candidates (except where f (x) is not defined),
(i) |x| = 2.5 Asymptotes/Holes
−x if x < 0 where for a small  > 0:
(ii) |x| ≥ 0 · Hole at point (x0 , fsemplified (x0 )) if plugging the · Increasing Inflection if:
(iii) | − x| = |x| critical point x0 in the numerator of f gives 00 . f 00 (xi − ) < 0 ∧ f 00 (xi + ) > 0
(iv) |ca| = c|a|, if c > 0 · Vertical asymptote at a critical point x0 if: · Decreasing Inflection if:
(v) |xy| = |x||y| limx→x− f (x) = ±∞ (left at x = x0 ) f 00 (xi − ) > 0 ∧ f 00 (xi + ) < 0
0
(vi) |x2 | = x2 limx→x+ f (x) = ±∞ (right at x = x0 ). · Otherwise nothing happens on xi .
0
Flavio Schneider · Cheat Sheet Page 1
AP

, 3 Trigonometry 3.5 Reciprocal Identities 3.12 Half-Angle Identities 3.19 Degrees
1 q
(i) cot(x) = x 1−cos(x)
3.1 Unit Circle

tan(x) (i) sin 2
=± 2
y
1
(ii) csc(x) = sin(x)
q
1+cos(x)
x

(ii) cos 2
=± 2
(0, 1)
1
(iii) sec(x) = cos(x) q 
− 12 ,

2
3
 
1

2, 2
3


x
 1−cos(x)
(iii) tan 2
=± 2



2
√ 
2
√
2
√ 
2
2 , 2 π 2 , 2
2

3.6 Quotient Identities (iv) tan x

=
1−cos(x)  √ 

3
π
3 √ 
2 sin(x) − 3 1
2 , 2

4 90◦
π
4
3 1
2 , 2

sin(x) sin(x)
120◦ 60◦
(i) tan(x) = cos(x) (v) tan x

= 5π
6
π
6
2 1+cos(x) 150◦ 30◦
cos(x)
(ii) cot(x) = sin(x) (−1, 0) (1, 0)
3.13 Sum-to-Product Formulas π 180◦ 0◦ ◦
360 2π x
   
3.7 Sum Identities (i) sin(x) + sin(y) = 2 sin x+y
2
cos x−y
2 210◦ 330◦
7π 11π
(i) sin(x + y) = sin(x) cos(y) + cos(x) sin(y)
    6 6
x−y x+y
(ii) sin(x) − sin(y) = 2 sin cos 2 2



3 1
 5π
240 ◦

270◦
300 ◦

√
3 1

2 , −2 2 , −2
(ii) cos(x + y) = cos(x) cos(y) − sin(x) sin(y)    
4
4π 5π
4

3 3


(iii) tan(x + y) =
tan(x)+tan(y) (iii) cos(x) + cos(y) = 2 cos x+y2
cos x−y 2



2
√ 
2 ,− 2
2

2
√
2
√ 
2 ,− 2
2

1−tan(x) tan(y)      √   √ 
− 12 , − 3 1 3

(iv) cos(x) − cos(y) = −2 sin x+y 2
cos x−y 2
2 2, − 2


(0, −1)
3.8 Difference Identities
(i) sin(x − y) = sin(x) cos(y) − cos(x) sin(y) 3.14 Product-to-Sum Formulas
(ii) cos(x − y) = cos(x) cos(y) + sin(x) sin(y) (i) sin(x) sin(y) = 1
[cos(x − y) − cos(x + y)]
2
tan(x)−tan(y)
(iii) tan(x − y) = 1+tan(x) tan(y) (ii) 1
cos(x) cos(y) = 2 [cos(x − y) + cos(x + y)]
3.2 Domain and Range
(iii) sin(x) cos(y) = 21 [sin(x + y) + sin(x − y)]
· sin : R −→ [−1, 1] 3.9 Double Angle Identities
(iv) cos(x) sin(y) = 21 [sin(x + y) − sin(x − y)]
· cos : R −→ [−1, 1] (i) sin(2x) = 2 sin(x) cos(x)

· tan : x ∈ R x 6= π
+ kπ −→ R (ii) cos(2x) = cos2 (x) − sin2 (x) 3.15 Tangent expression
2
cos(2x)+1
(iii) cos(2x) = 2 cos2 (x) − 1 ⇒ cos2 (x) = h i
· cot : {x ∈ R | x 6= kπ} −→ R 2
If u = tan( x2 ) : dx = 2
du
1−cos(2x) 1+u2
(iv) cos(2x) = 1 − 2 sin2 (x) ⇒ sin2 (x) = 2
· csc : {x ∈ R | x 6= kπ} −→ R \ (−1, 1)
2 tan(x) 1−u2
(v) tan(2x) = (i) cos(x) = 1+u2
6 π2 + kπ −→ R \ (−1, 1) 1−tan2 (x)

· sec : x ∈ R x =
2u
(ii) sin(x) = 1+u 2
· sin−1 : [−1, 1] −→ − π2 , π2
 
3.10 Co-Function Identities (iii) 2u
tan(x) = 1−u2
π
· cos−1 : [−1, 1] −→ [0, π]

(i) sin 2
− x = cos(x)
π
3.16 Hyperbolic Functions

· tan−1 : R −→ − π2 , π2
  (ii) cos 2
− x = sin(x)
π

(iii) tan − x = cot(x) ex −e−x
2 (i) sinh(x) = 2
3.3 Pythagorean Identities (iv) cot π

− x = tan(x)
2 ex +e−x
(ii) cosh(x) =
(i) sin2 (x) + cos2 (x) = 1 π 2

(v) csc 2
− x = sec(x)
ex −e−x
(ii) tan2 (x) + 1 = sec2 (x) π
 (iii) tanh(x) =
(vi) sec 2
− x = csc(x) ex +e−x
(iii) 1 + cot2 (x) = csc2 (x)
3.11 Even-Odd Identities 3.17 Laws of Sines
3.4 Periodicity Identities sin(α) sin(β) sin(γ)
(i) sin(−x) = − sin(x) (i) a
= b
= c
(i) sin(x ± 2π) = sin(x)
(ii) cos(−x) = cos(x)
(ii) cos(x ± 2π) = cos(x)
(iii) tan(−x) = − tan(x) 3.18 Laws of Cosines
(iii) tan(x ± π) = tan(x)
(iv) cot(x ± π) = cot(x) (iv) cot(−x) = − cot(x) (i) a2 = b2 + c2 − 2bc cos(α)
(v) csc(x ± 2π) = csc(x) (v) csc(−x) = − csc(x) (ii) b2 = a2 + c2 − 2ac cos(β)
(vi) sec(x ± 2π) = sec(x) (vi) sec(−x) = sec(x) (iii) c2 = a2 + b2 − 2ab cos(γ)
Flavio Schneider Analysis I · Cheat Sheet Page 2
$2.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
c.7

Conoce al vendedor

Seller avatar
c.7 Icahn School of Medicine at Mount Sinai
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 meses
Número de seguidores
0
Documentos
26
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes