100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Modelling Computing Systems Hoofdstuk 2 Faron Moller & Georg Struth

Puntuación
4.0
(1)
Vendido
1
Páginas
6
Subido en
25-11-2020
Escrito en
2020/2021

Logic for Computer Science / Logica voor computertechnolgie hoofdstuk 2. Samenvatting van het boek Modelling Computing Systems geschreven door Faron Moller en Georg Struth. Samenvatting geschreven in het Engels. Aan de hand van voorbeelden en plaatjes wordt de stof en theorie verduidelijkt. Gegeven op Universiteit Utrecht.

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Hoofdstuk 2
Subido en
25 de noviembre de 2020
Número de páginas
6
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Hoofdstuk 2

A set is a collection of objects which typically share a property. The objects belonging to the
collection are individually referred to as its elements or members. The numbers of objects in a set A
is referred to as its cardinality and written as |A|. If there are not too many elements in the set then
it is described by writing its elements in a list between curly braces. Example:

- {false, true}; Cardinality = 2
- {3, 7, 14}; Cardinality = 3
- {red, blue, yellow}; Cardinality = 3
- {Joel, Felix, Oskar, Amanda}; Cardinality = 4

Listing all the elemens can get guite tedious. For lists with a great amount of elements we use the
following notation:

- {1, 3, 5, … , 99} (The set of 50 odd positive integers below 100);
- {a, b, c, .. , z} (The set of 26 letters of the alfabet);
- {2, 3, 5, 7, 11, 13, 17, …} (The infinite set of prime numbers);

But for example, the next element in the sequence after 17 is 21. Perhaps it’s isn’t even a number.
To avoind these kind of problems sets are typically describe not by explicitly listing the elements
between curly braces, but rather by describing the property that the elements share. In general, we
shall describe sets using the following set-builder notation: {x : x has property P}. This set consist of
exactly those elements x which satisfy the property P. More examples:

1. The collection of all beaches on the Gower Peninsula: {b : b is a beach on the Gower Peninsula}.
2. The collection of all people who climbed Mount Kailash: {p : p has climbed Mount Kailash}.
3. The collection of all prime numbers: {n : n is a prime number}.
4. The collection of all sets of people who have a common grandmother: {A : A is a set of people
who share a common grandmother}.



Note that Ø and { Ø} are different sets:
the set Ø contains no elements while
the set { Ø } contains one element,
namely the set Ø itself, and hence is not
the same as the empty set Ø.




A set with exactly one element is called a singleton:

- {a}
- {true}
- {{Wouter}}

Memberships are denoted by ∈. We can write the following propositions about sets:

- If x is an element of the set A, we write x ∈ A
- If x is not an element of the set A, we write x ∉ A

, A set is solely defined but its members, two sets are equal if, and only if, they have the same
elements. When you list the elements of a set, the order in which you list them, and the number of
times you list each element, doesn’t matter. Example:

- {3, 7, 14} = {7, 14, 3, 7, 3}
- {Joel, Felix, Oskar} ≠ {Joel, Felix, Oskar, Amanda}.

When all the elements of a set A are also elements of a set B, we say that A is a subset of B, written
A ⊆ B. More formally: A ⊆ B holds if and only if, for all x:

- x∈A⇒x∈B

We write A ⊈ B when A is not a subset of B; or more formally, ¬(A ⊆ B). If A and B are not equal, we
write A ≠ B. If A ≠ B and A ⊆ B we write A ⊂ B. Then A is a strict subset of B.

If x is an element of the set A x∈A

If x is not an element of the set A x∉A

If A and B are equal A=B
If A and B are not equal A≠B

If A = B and elements A = elements B (Subnet) A⊆B
If An and B are not a subnet A ⊈ B or ¬(A ⊆ B)

If A ≠ B and A ⊆ B (strict subnet) A⊂B



To help visualize a relation between sets, we can draw a Venn
diagram. For example we have the following sets:

1. X = {1, 2, 3, 4, 5}
2. Y = {2, 3, 4}
3. Z= {3, 4, 5, 6}

Here we have set U containing all possible elements (the universe
of discourse) as followed: U = {1, 2, 3, 4, 5, 6, 7, 8, 9,10} which will be the integer from 1 to 10.



The set B is a subset of U (here B drawn in green). The set A
is a subset of B (here A drawn in blue). In this way, we can
refer to the sets corresponding to the different regions of
this diagram, such as:

- the elements of B that are not in A;
- the elements in U that are not in A or B;
$3.59
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
4 año hace

4.0

1 reseñas

5
0
4
1
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
luukvaa Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
760
Miembro desde
7 año
Número de seguidores
589
Documentos
12
Última venta
1 semana hace

Welkom op mijn stuvia pagina! Kijk gerust rond welke samenvattingen op dit moment op mijn pagina staan. Gedurende elk jaar zullen er weer nieuwe samenvattingen verschijnen, dus neem af en toe een kijkje en klik op het knopje \'\'volgen\". Succes met studeren!

4.0

284 reseñas

5
108
4
102
3
58
2
5
1
11

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes