100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

TEST BANK FOR Linear Algebra: A Modern Introduction 5th Edition by David Poole ISBN:978-8214013054 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!NEW LATEST UPDATE!!!!!

Puntuación
-
Vendido
-
Páginas
154
Grado
A+
Subido en
22-08-2025
Escrito en
2025/2026

TEST BANK FOR Linear Algebra: A Modern Introduction 5th Edition by David Poole ISBN:978-8214013054 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!NEW LATEST UPDATE!!!!!

Institución
Linear Algebra: A Modern Introduction 5th Edition
Grado
Linear Algebra: A Modern Introduction 5th Edition











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Linear Algebra: A Modern Introduction 5th Edition
Grado
Linear Algebra: A Modern Introduction 5th Edition

Información del documento

Subido en
22 de agosto de 2025
Número de páginas
154
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Copyright Cengage Learning. Powered by Cognero.
st st st st st Page 1
st

, Test Bank For st st




Linear Algebra A Modern Introduction 5th Edition by David Poole Copyright 2026
st st st st st st st st st st st




Section 1.0 - 1.4 st st st




1. If u • v = 0, then ||u + v|| = ||u – v||.
st st st st st st st st st st st st st



a. True
b. False

2. If u • v = u • w, then either u = 0 or v = w.
st st st st st st st st st st st st st st st st



a. True
b. False

3. a • b × c = 0 if and only if the vectors a, b, c are coplanar.
st st st st st st st st st st st st st st st st st



a. True
b. False

n
located by the vectors u and v is ||u – v||.
st

4. The distance between two points in
st st st st st st st st st st st st st st st st




a. True
b. False

5. If v is any nonzero vector, then 6v is a vector in the same direction as v with a length of 6 units.
st st st st st st st st st st st st st st st st st st st st st st



a. True
b. False

6. The only real number c for which [c, –2, 1] is orthogonal to [2c, c, –4] is c = 2.
st st st st st st st st st st st st st st st st st st st



a. True
b. False

7. The projection of a vector v onto a vector u is undefined if v = 0.
st st st st st st st st st st st st st st st



a. True
b. False


8. The area of the parallelogram with sides a, b, is
st st st st st st st st st s t st || st ||

a. True
b. False

2 2 2 2
, then (a × b • c) = ||a|| ||b|| ||c|| .
st

9. If a, b, c are mutually orthogonal vectors in
st st st st st st st st st st st st st st st st




a. True
b. False

10. For all vectors v and scalars c, ||cv|| = c||v||.
st st st st st st st st st



a. True
b. False
Copyright Cengage Learning. Powered by Cognero.
st st st st st Page 2
st

, n
11. For all vectors u, v, w in
st st st st st st st , u – (v – w) = u + w – v.
st st st st st st st st st st st




a. True
b. False

12. The projection of a vector v onto a vector u is undefined if u = 0.
st st st st st st st st st st st st st st st



a. True
b. False

13. The vectors [1, 2, 3] and [k, 2k, 3k] have the same direction for all nonzero real numbers k?
st st st st st st st st st st st st st st st st st st



a. True
b. False

14. If a parity check code is used in the transmission of a message consisting of a binary vector, then the total number of 1’s i
st st st st st st st st st st st st st st st st st st st st st st st st



n the message will be even.
st st st st st



a. True
b. False

15. The distance between the planes n • x = d1 and n • x = d2 is |d1 – d2|.
st st st st st st st st st
st
st st st st st
st
st
st
st



a. True
b. False

16. The zero vector is orthogonal to every vector except itself.
st st st st st st st st st



a. True
b. False

17. The products a × (b × c) and (a × b) × c are equal if and only if b = 0.
st st st st st st st st st st st st st st st st st st st st st



a. True
b. False




18. Simplify the following vector expression: 4u – 2(v + 3w) + 6(w
st st st st st st st st st st st st st u).


19. Find all solutions of 3x + 5 = 2 in
st st st st st st st st st st , or show that there are no solutions.
st st st st st st st




a. 2 s t



b. 4 s t



c. 6 s t



d. 8 s t




Find the distance between the parallel lines.
st st st st st st st


20.
and
st st




21. Find the acute angle between the planes
st st st st st st st st 3 and
st st .


Copyright Cengage Learning. Powered by Cognero.
st st st st st Page 3
st

, 22. Find the distance between the planes st st st st st st s t and st .

23. Find values of the scalar k for which the following vectors are orthogonal.
st st st st st st st st st st st st



u = [k, k, –2], v = [–2, k – 1, 5]
st st st st st st st st st st st




24. Simplify the following expressions: st st st



(a) (a + b + c) × c + (a + b + c) × b + (b – c) × a
st st st st st st st st st st st st st st st st st st st st



(b) (v + 2w) ∙ (w + z) × (3z + v)
st st st st st st st st st st




25. Find the check digit that should be appended to the vector u = [2, 5, 6, 4, 5] in
st st st st st st st st st st st st st st st st st st st st if the check vector is c = [1, 1, 1, 1,
st st st st st st st st st st




1, 1]. st




26. If u is orthogonal to v, then which of the following is also orthogonal to v?
st st st st st st st st st st st st st st st




27. What is the distance of the point P = (2, 3, –1) to the line of intersection of the planes 2x – 2y + z = –3 and 3x – 2y + 2z = –
st st st st st st st st st st st st st st st st st st st st st st st st st st st st st st st st st st



17?

28. In a parallelogram ABCD let st st st st st st = a, st st st b. Let M be the point of intersection of the diagonals. Express
st st st st st st st st st st st st , st




st and s t s t as linear combinations of a and b.
st st st st st st




29. Suppose that the dot product of u = [u1, u2] and v = [v1, v2] in st st st st st st st st st st st st st st st st



2 st

were defined as u · v = 5u1 v1 + 2u2 v2. Consider the following statements for vectors u, v, w, and all scalars c.
st st st st st st st
st st
st
st
st st st st st st st st st st st st st



a. u · v = v · u st st st st st st



b. u · (v + w) = u · v + u · w
st st st st st st st st st st st st



c. (cu) · v = c(u · v) st st st st st st



d. u · u ≥ 0 and u · u = 0 if and inly if u = 0
st st st st st s t st st st st st st st st st st st




30. Find a value of k so that the angle between the line 4x + ky = 20 and the line 2x – 3y = –6 is 45°.
st st st st st st st st st st st st st st st st st st st st st st st st st st




31. Find the orthogonal projection of v = [–1, 2, 1] onto the xz-plane.
st st st st st st st st st st st st




32. Show that the quadrilateral with vertices A = (–3, 5, 6), B = (1, –5, 7), C = (8, –3, –1) and D = (4, 7, –2) is a square.
st st st st st st st st st st st st st st st st st st st st st st st st st st st st st




33. If a = [1, –2, 3], b = [4, 0, 1], c = [2, 1, –3], compute 2a – 3b + 4c.
st st st st st st st st st st st st st st st st st st st st st




3
34. Find the vector parametric equation of the line in that is perpendicular to the plane 2x – 3y + 7z –
st

st st st st st st st st st st st st st st st st st st st st




4 = 0 and which passes through the point P = (l, –5, 7).
st st st st st st st st st st st st st st




35. Find all values of k such that d(a, b) = 6, where a = [2, k, 1, –4] and b = [3, –1, 6, –3].
st st st st st st st st st st st st st st st st st st st st st st st st




36. Show that if a vector v is orthogonal to two noncollinear vectors in a plane P, then v is orthogonal to every vector in
st st st st st st st st st st st st st st st st st st st st st st st



P.

37. Final all solutions of 7x = 1 in st st st st st st st st , or show that there are no solutions.
st st st st st st st




38. Let u1 and u2 be unit vectors, and let the angle between them be
st
st
st
st
st st st st st st st st st s t




s t radians. What is the area of the parallelogram whose diagonals are d1 = 2u1 – u2 and d2 = 4u1 –5u2?
st st st st st st st st st st st
st
st
st
st
st
st
st
st
st




Copyright Cengage Learning. Powered by Cognero. st st st st st Page 4 st
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
MidnightMajors Harvard
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
5 meses
Número de seguidores
3
Documentos
265
Última venta
1 mes hace

4.7

3 reseñas

5
2
4
1
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes